

Aerosol and Atmospheric Chemistry Modeling and Research in JMA and MRI

Masao Mikami, Takashi Maki, T. Thomas Sekiyama, and T. Y. Tanaka

Meteorological Research Institute/Japan Meteorological Agency

Topics

- Current state of operational aerosol and atmospheric chemistry modeling in JMA
- Observation, modeling, and data-assimilation
 -Research activity in MRI-
- Comments on observability and requirements for data assimilation and verification

Operational Atmospheric Environmental Model in JMA

* Global Aerosol Model

Dust Aerosol

 Global Atmospheric Chemistry Model Tropospheric Ozone
Oxidant forecast from 2010

* Global CO₂ Model \implies Information of CO₂ distribution

JMA/MRI dust model: MASINGAR

(Model of Aerosol Species IN the Global Atmosphe Re)

Continent

Ocean

MASINGAR is developed in MRI (Tanaka et al., 2003) to study the atmospheric aerosols (MD, BC, SS, S) and related trace species.

Global Aerosol Model: MASINGAR/MRI Version

- Based on MRI-GCM-CTM
 - >T42L30~T106L32 spectral model
- 4 aerosols: Mineral dust(MD), Acid sulfate(AS), Sea salt(SS), Carbonaceous(CB), and Insoluble(IS)
- Physical processes
 - >vertical transport with turbulence, cumulus convection, gravitational sedimentation, rain washout
 - >dry and wet depositions
- Dust particle size: 10 bins from 0.1 to 10 µm
- Surface (Vegetation, Soil water, Snow cover), Land use, Texture, PSD
- Dust Emission: Saltation Bombardment > Saltation \rightarrow Dust emission

$$\tilde{Q}(D) = \frac{c_s(D)\rho u_*^3}{g} \left(1 - \frac{u_{*t}(D)^2}{u_*^2}\right)$$

where $c_s(D) = 0.25 + \frac{v_g(D)}{3u_*}$
 $Q = \int_0^\infty \tilde{Q}(D) p_m(D) dD$

$$\tilde{F}(D_s, D_d) = \frac{2}{3} \frac{\rho_p}{\rho_a} \frac{\beta \gamma}{u_{*t} (D_d)^2} \tilde{Q}(D_s)$$

The MRI Earth System Model

Dust Forecast Model: MASINGAR/JMA Version

Atmospheric Model	MRI/JMA98AGCM (Shibata et al., 1999)] [Model name	MASINGAR (Tanaka et al., 2003, 2005)
Dynamics	General Circulation Model (Spectral Model)	Ц		
Resolution	T106 (1.125°), L30 (~0.4 hPa)		Dust bin	10 bins (0.2 ~ 20 µm)
Time Integration	Semi-implicit Scheme			C^{1}
Cumulus	Arakawa-Schbert Scheme		Emission	Gillet Scheme (see below)
Convection			Transport	3D-Semi Lagrangian Scheme
Radiation	2 Stream (Shibata)		Diffusion	Turbulent and cumulus convection
Surface Processes	SiB		Diffusion	Turbulent and cumulus convection
Turbulent Diffusion	Mellor-Yamada (Level 2 Closure)		Deposition	Dry and Wet Deposition
Nudging	Meteorological analysis, forecast, and snow depth analysis			

$$F = CMA \frac{W_{gt} - W_g}{W_{gt}} (U_{10} - U_t) U_{10}^2 \quad \text{for} \quad U_{10} > U_t$$

F: dust emission flux, *M*: mass distribution, W_g : soil moisture, U_{10} : wind velocity at 10m,

C: dimensional factor, A: erodible fraction, W_{gt} : threshold value of Wg (0.3kg/m²), U_t : threshold wind speed (6.5m/s, 10m)

Dust emission flux depends on the surface conditions (vegetation, snow cover and soil moisture) and the surface wind speed.

JMA's activities on Asian dust

JMA have been providing the Aeolian dust information since January 2004. MRI have been developing the numerical dust aerosol model .

Chemical Transport Model in JMA

Forecast	35 long-lived species, 14 short-lived species	
Chemical Reaction	79 Gas phase reactions, 34 Photolysis, Type I and II PSC, Salfate aerosol	
Heterogeneous Reaction	6 types of PSC, 3 types of Salfate aerosols	
Boundary Condition	Surface concentration of N ₂ O, CH ₄ , CO ₂ , CO, No _y , CCl ₄ , CFCl ₃ , CF ₂ Cl ₂ , CH ₃ Cl, CH ₃ Br, CF ₂ ClBr, CF ₃ Br, and CCly	
Advection	3-D Semi-Lagrangian (Long-lived species)	
Vertical diffusion	Turbulent diffusion	
Surface deposition	Consider deposition velocity for O _x	
Wet deposition	Consider precipitation scavenging for HNO ₃ , HCl, and HBr	
Nudging	Total O ₃ (NASA/OMI)	
Reference	Shibata et al, 2005	

Atmospheric part is the same as MASINGAR

Topics

- Current state of operational aerosol and atmospheric chemistry modeling in JMA
 Observation, modeling, and data-assimilation -Research activity in MRI-
- Comments on observability and requirements for data assimilation and verification

Aerosol data assimilation

* Aerosol observation:

Available data are very sparse! Spatio-temporally, both groundbased and satellite data

* Model simulation:

useful, but not real! (it's virtual reality)

CALIOP/CALIPSO

* Data assimilation:

It's a fusion of observation and simulation with powerful and highly informative techniques.

4-Dimensional Ensemble Kalman Filter

	4D-Var	4D-EnKF
Background error statistics	Flow-dependent	Flow-dependent
Program code	Complicated	Simple
Adjoint matrix	Necessary	Unnecessary
Observation operator	Requires tangent linear & adjoint operators	Requires only a forward transformation
Asynchronous observations	Handles at each observational time	Handles at each observational time
Analysis error covariance	Not provided	Explicitly provided

Satellite Lidar Observation (CALIPSO)

- CALIPSO , launched in April 2006 by NASA, is the first satellite that carries a lidar instrument optimized for aerosol.
- CALIPSO is in a 705-km polar orbit with a 16-day repeat cycle as part of the NASA A-train.
- The polar orbit has a 1000 km longitudinal interval per day at mid-latitudes, with the swath width of zero degrees.

LIDAR (Light Detection And Ranging): optical remote sensing technology that measures properties of scattered light to find information of distant particles, like the radar technology which uses radio wayes.

Results (Dust Flux Distribution)

 $F^*(x, t) = \alpha F(x, t)$, where grid x and time t.

(a) Dust emission intensity F(x, t) generated by MASINGAR without any assimilation

(b) the correction factor α estimated by the EnKF assimilation. All 10 size bins of dust aerosol are accumulated and averaged from 21 to 30 May 2007.

Results (comparison with a ground-based lidar)

Observed and simulated extinction coefficients at 532nm for non-spherical particles (≈ dust aerosol) at 133°E/35°N. (X-axis: date, Y-axis: altitude in km)

(a) Independent groundbased lidar observation

(b) free model run result without assimilation

(c) data assimilation result with CALIPSO data.

⁽Sekiyama et al., 2009 ACP)

Results (comparison with weather reports)

Surface Dust $[\mu q/m^3]$ with EnKF 28MAY2007 Surface Dust [µg/m³] w/o EnKF 28MAY2007 (b) (a) 45N -45N (a) Free model run w/o EnKF 00-35N 35N (b) Analysis of 4D-EnKF assimilation. 25N -25N Red points show weather 150E 135E 150E 120E 135E 120E stations observed dust event. Terra MODIS Optical Depth 28MAY2007 Blue did not. 0.9 (C) 45N · 0.7 (c) MODIS OT on 28May07. 0.5 35N

25N

135E

0.3

0.1

150E

Data assimilation experiment using operational Lidar network by NIES

Same information as CALIOP/CALIPSO

Less spatial information: sparsely located sites (far from source region) Continuous temporal information compared to CALIOP

NIES Lidar network stations MAY2007

Summary of EnKF

- The 4D-EnKF assimilation system was successfully performed a one-month experiment in May 2007 with CALIPSO aerosol observations.
- The assimilation results was validated by independent dust observations in East Asia: a ground-based LIDAR and weather reports of aeolian dust events.
- This assimilation system can potentially provide global aerosol reanalyses for various types and sizes.
- The reanalyses contains not only aerosol concentrations in the atmosphere, but also the dust emission intensity.

Dust observation in East Asia

1. Various Dust-related observation networks and new satellites

Operational: Routine Met., GAW, KMA-CMA PM10Net...

Research Base: EANET, AD Net, SKYNET ...

Intensive site: Hedo, Fukue...

No Standard!

2. Physical process monitoring (Research use)

Emission and deposition (Mikami et al., validation of model)

3. Network of Network

TEMM/UNEP DSS forecast and early warning system WMO SDS-WAS Asian Regional Center \rightarrow cooperation and linkage with research community.

Various Dust-related observation networks in Asia

(S-U Park)

GOSAT TANSO-CAI Cloud Aerosol Imager Cloud Properties, Aerosol Properties (AOT, SSA, Phase Function of each aerosol type)

Highly accurate observation realized through advanced technology

IBUKI is equipped with a greenhouse gas observation sensor (TANSO-FTS) and a cloud/aerosol sensor (TANSO-CAI) that supplements TANSO-FTS. The greenhouse gas observation sensor of IBUKI observes a wide range of wave lengths (near infrared region ~ thermal infrared region) within the infrared band to enhance observation accuracy. The number of observation channels is as large as approx. 18,500. A cloud/aerosol sensor observes clouds and aerosol that can be a factor leading to errors in the measurement of greenhouse gas in order to improve greenhouse gas observation accuracy.

[「]いぶき」の観測点(標準モード5万6千点) Observation points of IBUKI (56,000 points in standard mode)

and EarthCARE(2013), GCOM-C1/SGLI (2013)....

Dust observation in East Asia

1. Various Dust-related observation networks

Operational: Routine Met., GAW, KMA-CMA PM10Net... Research Base: EANET, NIES Lidar, SKYNET...

Intensive site: Hedo, Fukue... No Standard!

2. Physical process monitoring (Research use)

Emission and deposition (Mikami et al., validation of model)

3. Network of Network

TEMM/UNEP DSS forecast and early warning system
 WMO SDS-WAS Asian Regional Center
 → cooperation and linkage with research community.

DRAEMON (DRY AND WET DEPOSITION MONTARING NETWORK)

Sapporo

Toyama Tottori Tsukuba Fukuoka Nagoya

Hedo

Data SIO, NOAA, U.S. Navy, NCA, GEBCO Data © 2009 MIRC/JHA Image © 2009 TerraMetrics © 2009 Cena/Sect Image

Dust observation in East Asia

1. Various Dust-related observation networks

Operational: Routine Met., GAW, KMA-CMA PM10Net... Research Base: EANET, NIES Lidar, SKYNET...

Intensive site: Hedo, Fukue... No Standard!

2. Physical process monitoring (Research use)

Emission and deposition (Mikami et al., validation of model)

3. Network of Network

TEMM/UNEP DSS forecast and early warning system WMO SDS-WAS Asian Regional Center \rightarrow cooperation and linkage with research community.

Topics

- Current state of operational aerosol and atmospheric chemistry modeling in JMA
 Observation, modeling, and data-assimilation -Research activity in MRI Comments on observability and requirements
 - for data assimilation and verification

1. EnKF proved to be useful for aerosol data assimilation

Our results clearly proved the availability of EnKF for dust model. EnKF is useful for aerosol data assimilation (better than 4D-Var).

2. Great availability of Satellite information for aerosol data assimilation

CALIOP/CALIPSO proved to be effective for model improvement. Use of new sateline information (GOSAT, GCOM-CI, EARTH-CARE) must be helpful. Most of them are research use (non-operational).

3. Availability of ground based Lidar network (NIES-AD Net/GALION)

NIES Lidar Net (AD Net, 23 sites): Most of them is open for public Data assimilation for long-range transported aerosol GALION

4. Data sharing effort for DSS in East Asia

We have a lot of ground-based monitoring resources in East Asia.

Thank you !