

#### Fleet Numerical Meteorology & Oceanography Center

#### **Overview of Operations**

27 April 2010

Mark Swenson Chief Science Officer N34 – AOPS, Models & Data





#### FNMOC Mission

- Mission We produce and deliver weather, ocean, and climate information for Fleet Safety, Warfighting Effectiveness, and National Defense
- Numerical Weather Prediction is the core of our business
  - Global and Regional Operational Models
  - Scheduled and On-Demand Products



### Organizational Profile

- Highly technical, educated, and warfare experienced workforce consisting of military, civilians, and contractors
  - 23 Officers
    - 48% with MS Degree
    - ~22% will attend NPS next tour
    - wardroom includes: 1 x UK PEP, 1 x USAF PEP (deployed to Afghanistan), 1 x OIC, FNMOD Asheville
  - 24 Enlisted
    - 63% with Advanced Navy Specialty Training
    - includes 2 x IA, 1 x TAD to BHR
  - 140 FTE and ~10 Contractors:
    - Predominantly Physical Science and IT specialties (Meteorology, Oceanography, Computer Sciences)
    - PhD 5, MS Degree 23%, BS Degree 34%
- \$26.4M annual TOA





# Operations? What's That?

- What does operational mean?
  - Directly supports Naval operations (deployed forces)
    - Information assured
    - High levels of reliability and availability
    - 24 hours a day, every day
  - Paid for by operations & maintenance funding
    - No research and development funding
  - Automation is essential
  - Latency is key



# Models and Applications Points

- NOGAPS/NAVDAS-AR foundation of production cycle
- Models and applications are interconnected
  - Medium-term plan is to directly incorporate aerosol predictions into NOGAPS framework
- Wide range of capabilities are supported by the modeling cycle



## Models and Applications





#### NOGAPS in the OPSRUN

- NOGAPS is run three times for each of four valid times per day.
  - Prelim provides BCs for tropical cyclone model and early mesoscale runs
    - Obs latency 0-4 hrs
  - Realtime obs latency 0.5-6.5 hrs
  - Posttime obs latency 5-11hrs
- Data from late in the obs window has more impact than data from early in the obs window
- Job initiation is event-driven so that each job starts only when prerequisite jobs have completed



# **Current A2 Operational Run**

#### ATMOSPHERIC MODELS





#### **OPSRUN Points**

- Major peak in activity +4 6 hrs each watch
- Peak pushes the limits
  - Changes that require additional resources must be managed very carefully
  - 10% increase in run time can be too much



#### Normal OPAL OPS Run





#### Observation Counts Points

 About 1 million observations are exploited in the data assimilation each cycle.



## Observation Counts from Innovation Files



L. Lyjak: /home/lyjakl/ops/src/app/innov\_statisfics/src/main/plot\_innov\_stats.cpp: jobNumber=3042: 23 Apr 2010 17:54:42 UTC: Page 1 of 1

#### NOGAPS assimilates ~ 1 million observations per run

Fleet Numerical...



#### Data Sources Points

- We get every type of data that we are in a position to exploit
- All data processing must be automated and robust



# Ship Weather Reports





# **Buoy Observations**





#### RADIOSONDE Observations





# AIRCRAFT Reports





# DMSP Polar SSMI/S (Water Vapor, Rain Rate, Wind Speed)





# Geostationary Satellite Winds





# AMSU-A Coverage





# ASCAT METOP Coverage





# ATOVS Coverage





#### **MODIS Polar Feature Track Winds**





# **AVHRR Polar Feature Track Winds**





#### WINDSAT Total Precipitable Water & Winds





# Summary

- Automation and low latency are important for operations
- Desired latency is 0.5 6.5 hours, depending on when the observation occurs
- Maximum latency is 5 11 hours
- New capabilities that require additional computer resources must be managed very carefully



## Questions?