

Douglas Westphal Cynthia Curtis James Campbell (UCAR) Edward Hyer (UCAR) Ming Liu Jeffrey Reid Annette Walker Jianlong Zhang (UND)

NRL

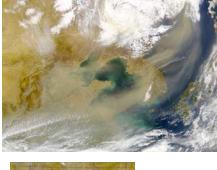
westphal@nrlmry.navy.mil (831) 656-4743 Charles Skupniewicz Torsten Duffy Andrew Hergert

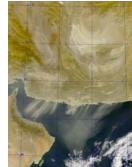
FNMOC

charles.skupniewicz@navy.mil (831) 656-5104

Outline:

- 1. Military requirements
- 2. Overview of model suite
- 3. Verification and Validation
- 4. Distribution
- 5. Lessons learned and issues




Why does DoD care about aerosol particles?

• Impacts on satellite retrievals, intelligence gathering


• Impacts on the atmospheric radiative budget (direct, semidirect, indirect)

• Impacts on visibility, operations and equipment

• Impacts on EO systems, slantrange vis., lock-on range ⇒ Mostly concerned with direct effects(vis and IR) and mechanical effects

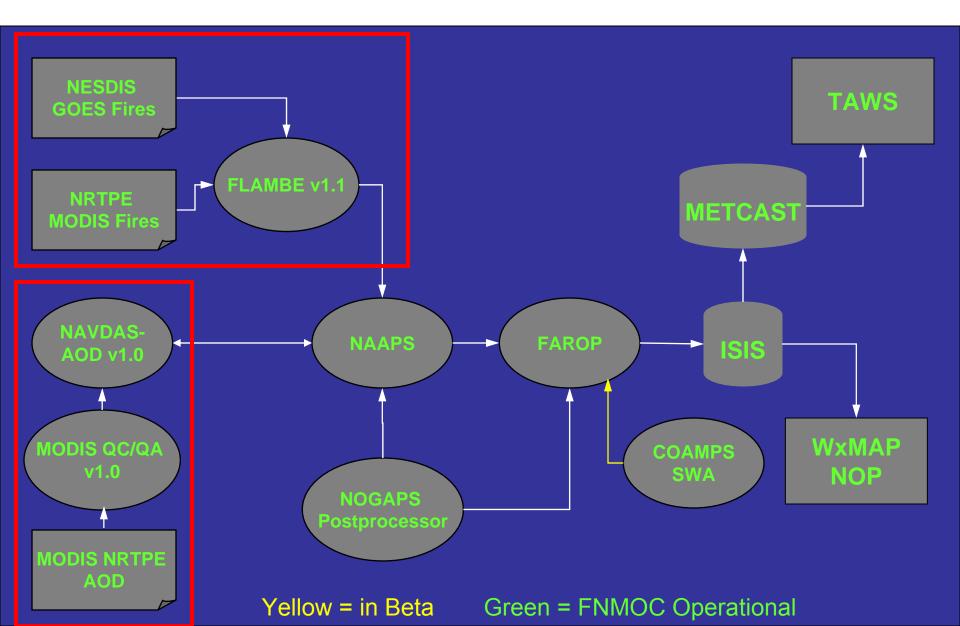
System **NOGAPS** NAVDAS-AOD **FLAMBE*** DSD NAAPS, COAMPS FAROP** **TEDS**, Metcast MCSST[†], TAWS[‡] **NPOESS**

Function

- **Forecasts dynamics**
- Data assimilation for aerosols
- Detects fires, determines smoke flux Dust source locations
- Forecast aerosol concentrations Calculates aerosol optical properties Database and Distribution

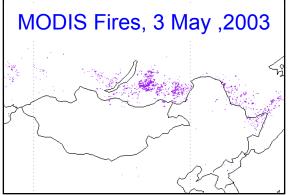
Applications

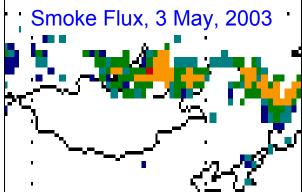
[†] NRL Atmospheric Variational Data Assimilation System – Aerosol Optical Depth
*Fire Locating and Modeling of Burning Emissions
**Forecast of Atmospheric and Optical Radiative Properties
[†] Multi-channel Sea Surface Temperature
[‡] Target Acquisition Weapons Software

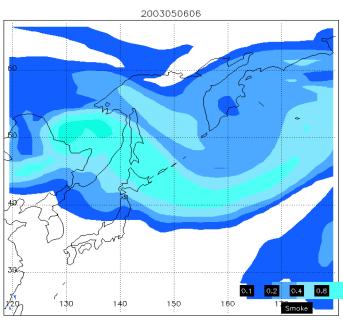

- NAVDAS-AOD operational, four times a day
- FLAMBE (fire detection) operational, four times a day
- NAAPS operational at FNMOC, 6-day forecast, four times a day
- COAMPS operational for SW Asia, Afghanistan, 3-day forecast, twice a day.
- FAROP operational, four times a day
 - Derived optical properties in TEDS
 - Available for TAWS, NPOESS
- Products available on SIPR/NIPR on NRL Web sites: www.nrlmry.navy.mil/aerosol/ www.nrl-mry.navy.smil.mil/aerosol/

⇒ Progress due to operationally focused R&D

Off-line Aerosol Modeling Flow Diagram




FLAMBE: Fire Locating and Modeling of Burning Emissions


Purpose: Input: Output:	Determine real-time smoke fluxes GOES, MODIS
Fire parameters:	Location (lat, lon)
	Smoke flux, g m ⁻² s ⁻¹
Horizontal res.:	GOES: 4 km; MODIS: 1 km
Temporal res.:	GOES: 30 min., MODIS: 2X Day
Next step: use	global geostationary satellites

⇒Data latency (4h) not suitable for in-line simulations

Purpose: Status: Input:	Data assimilation for aerosol optical depth (3-d Var) Operational, 4x daily NRL Level 3 MODIS Over-Ocean AOD (6-h data window) Next step: Over-land MODIS, MISR and CALIPSO
Future input:	NPP, NPOESS, AVHRR, MetOp, MSG, MTSAT, AATSR, GOES-R
Output: Aerosol analysis and: error statistics Temporal resolution: Distribution:	3-d distribution of four species 3 hourly NAAPS and FAROP; web

⇒Data latency (4h) not suitable for in-line simulations

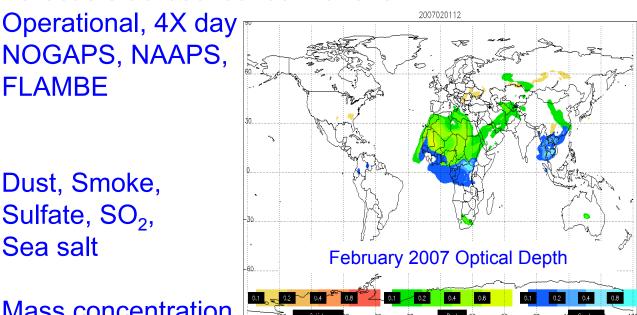
Other Issues:

- MODIS near end of life
- NPP and JPSS VIIRS data quality is uncertain
- SDR vs. EDR
 - Dependence on EDRs (produced by others)
 - Burden of processing SDR
 - Latency, data volume, control
 - Need to transition QC/QA to upstream centers
- Modeler's needs differ from conventional imagery
 - Sparse but accurate vs. pretty pictures
- Need to transition QC/QA to upstream centers
- Near-real-time availability of community datasets to FNMOC

NAAPS: Navy Aerosol Analysis and Prediction System

NOGAPS, NAAPS,

Forecasts aerosol concentrations



Purpose: Status: Input:

Output: Species:

Dust, Smoke, Sulfate, SO₂, Sea salt

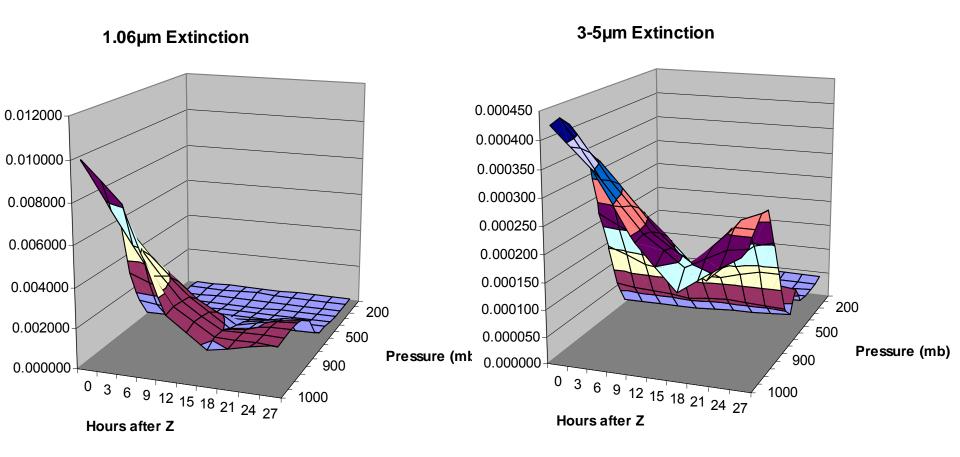
FLAMBE

Units: Horizontal resolution: Vertical resolution: Temporal resolution:

Data volume: **Distribution**:

Mass concentration 1 degree, 360 X 180 grid 20 m, 200 m inc. to 2 km, 1 km inc. to 16 km 3-hourly first 24 hours, 6-hourly for next 3 days, 12 hourly last two days 1.8 Gb per forecast cycle Internal, plots on web

2007, Witek, M. L., P. J. Flatau, P. K. Quinn, and D. L. Westphal, Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res., 112, D08215, doi:10.1029/2006JD007779.


⇒ Optical depth and concentration not directly useful

- Post processor calculates optical properties and estimate slant path visibility from NAAPS and NOGAPS data.
- Derives extinction, absorption, and asymmetry parameter at all levels and optical depth at 19 wavelengths and 3 bands (340 nm-10.6 μm)
- Forecast fields distributed via Navy database
- Operational at FNMOC; fields used daily by NAVO in SST algorithm

Sample extinction (km⁻¹) output for 12:00 GMT 10/04/2005 at 1 48 19 S, 114 45 23 E

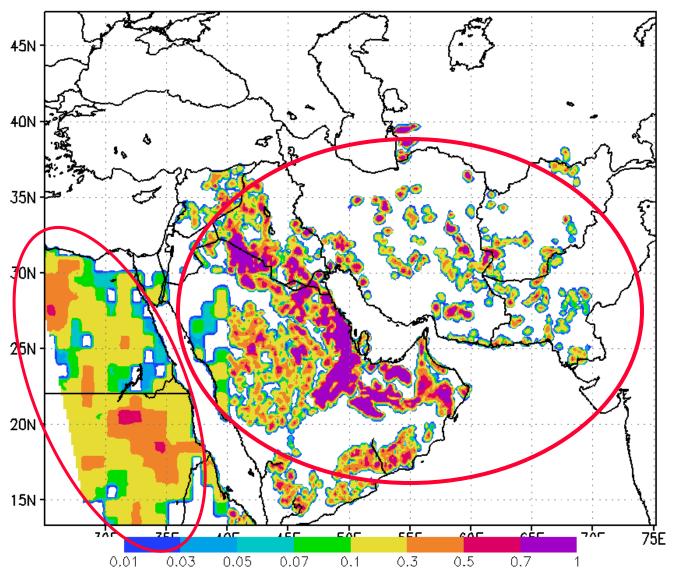
COAMPS: Coupled Ocean/Atmosphere Prediction System

2.5

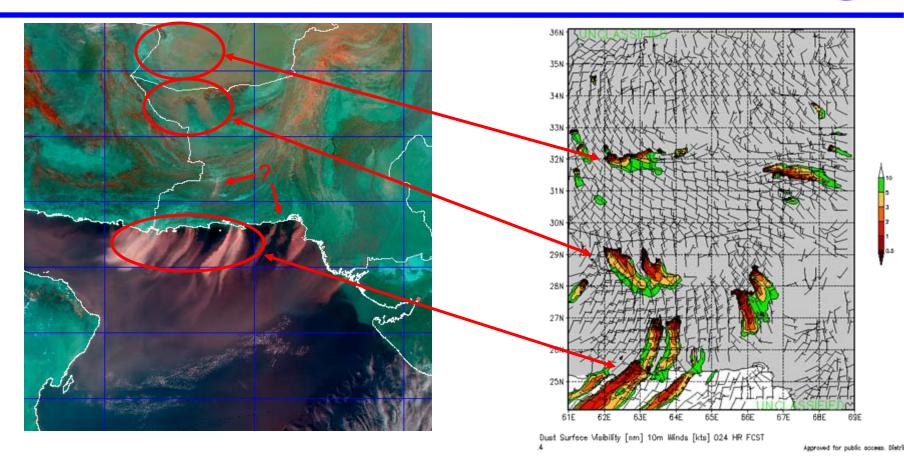
5

7.5

Purpose: Status: Input:	Forecasts aerosol con Operational, 2X day NOGAPS	ncentrations								
Output:										
Species:	Dust, cloud elements (ice, snow, rain, etc.)									
	Smoke, sulfate, sea salt, drizzle									
Units:	Mass concentration, µg m -3									
Horizontal resolution:	Variable, nominally 6-, 18- and 54-km grids									
Vertical resolution:	20 m at sfc.,	Surface dust visibility (nm) 03h fcst valid at 15Z28FEB2007 COAMPS starting from 12Z28FEB2007 grid 18-km								
	~200 m inc. to 2 km	(stow) 428								
	∼1 km inc. to 20 km	428 quad bin 388								
Temporal resolution:	1-hourly									
Data volume:	0.5 Gb per forecast	blue: stc								
Distribution:	Internal, web	1 (s/w)								
		Rectange and re								


Dust Source Database (DSD)

• Conventional source inventories not relevant at mesoscales


• Detailed dust inventory developed from satellite data, weather reports, etc., pragmatic approach

Walker, A. L., M. Liu, S. D. Miller, K. A. Richardson, and D. L. Westphal (2009), Development of a dust source database for mesoscale forecasting in southwest Asia, J. Geophys. Res., 114, D18207, doi:10.1029/2008JD011541.

Dust Enhancement Product (DEP; FNMOC) for 1330 GMT 9 Nov, 2009

COAMPS 6-km Dust 24-h Forecast (FNMOC) for 1200 GMT 9 Nov, 2009

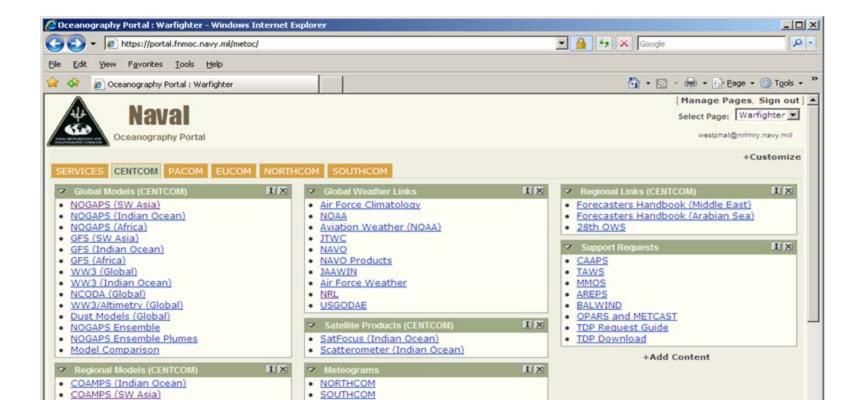
⇒DSD enables capability to forecast individual dust plumes.
⇒Potential for real-time source detection?

Dust Model Validation Using Horizontal Visibility • 8-14, 2001, Zabol, Iran

• Observed vs. three dust source databases

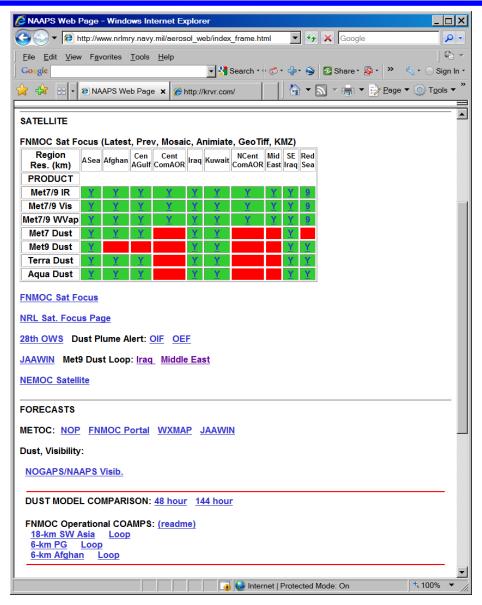
⇒ High-Res required for accurate onset and cessation
⇒ Visibility reports adequate for V&V (and DA?)
⇒ Avoids the pitfalls of the AOD-to-Vis conversion

- CENTCOM: dust forecasting in Iraq and Afghanistan
- TAWS: ingests extinction coefficients
- NAVO and EUMETSAT: dust screening of SST retrievals
 - Issue: removal of NAAPS output fields from GODAE server at FNMOC request
 - Impact: Severely limits our ability to collaborate with national labs and academia
- NDWC: fleet synthetic training
- NRO, NGA: scene correction, situational awareness
- NPOESS: algorithm development


⇒Widely varying customer base

Operational Centers want all products, domains, etc. all in one place. Leads to deep layering of products.

- ⇒ More than 2 or 3 mouse-clicks unacceptable; slow response.
- ⇒ Center web sites slow to adapt to new products or respond to new requests.

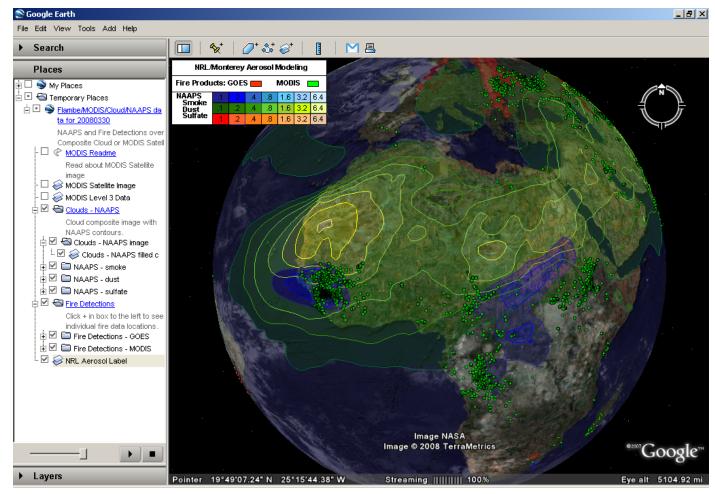


Product Distribution Issue: One size fits none

- Smaller, locally owned, agile web sites are optimal. E.g. 28th OWS. They own their plotting and web shop.
- Sample NRL site: one click per product. Sits on top of Center sites.

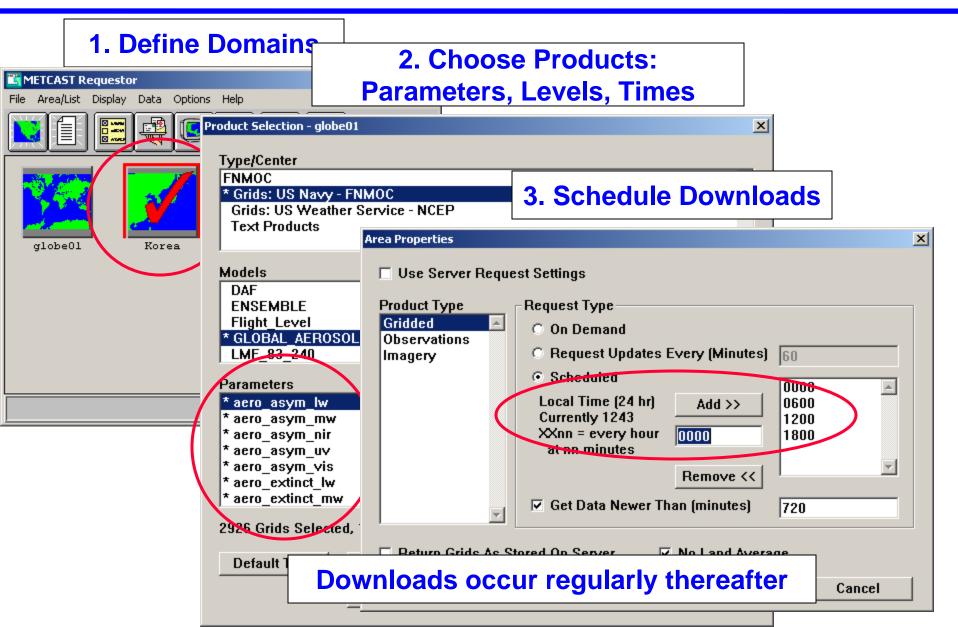
<u>E</u> dit <u>V</u>	<u>Vi</u> ew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp																
8 🥖	Oceanography Portal : Regional Models (CENTCOM)								ľ) - (<u>م</u> -	-	🛃 📴	age 👻 {	🗿 T <u>o</u>		
io to P	Portal] Region	al Models (CE	NTCO	N)										[Sig	in out		
	UN	CLASSIF	IED														
		<u>Back</u>					0144					DTO			0440		
	OC WXMAP Model: COAMPS		Area: SWAsia DTG: 20080331												3112		
Available DTGs			2008032900							2008032912							
			2008033000 2008033100						<u>2008033012</u> 2008033112								
	PRODUCT	all	all	all	all	all	all	all	all	all	all	all	all	all			
TAU		000	006	012	018	024	030	036	042	048	054	060	066	072	Loop		
all	500 hPa Heights [m] and Rel. Vort [10-5 s-1]	•		•	•				•					•			
<u>all</u>	850 hPa Temperature [C], winds [kts] and Rel. Hum. [%]																
<u>all</u>	700 hPa Heights[m] ; Winds[kt] ; Temperature[degC]			9	9	9			9	9			9		9		
<u>all</u>	all 925 hPa Heights[m] ; Winds[kt] ; Temperature[degC]			•	9				•			9	•				
<u>all</u>	all Sea Level Pressure			•		9			•				•				
<u>all</u>	1000-500 Thickness [dm] and Sea Level Pressure [mb]		•	9	9				9			9	9	•	9		
<u>all</u>	evious 6-hr Precipitation Rate [mm/6hr] and Sea Level Pressure [hPa]			9	9	9	9		9			9	9		9		
<u>all</u>	10 meter wind[kt]	•		9	9	9			9			9	9	•	9		
<u>all</u>	Evaporative Duct Height	•			9	9						9			9		
<u>all</u>	Sea Surface Temperature	•		•				•	•				•	•	9		
<u>all</u>	Dust Surface Visibility[nm] ; Winds[kt]	2	•	9	9	9						9	9				
<u>all</u>	Dust Optical Depth	2	•	•		9		•	•	•			•	•			
	•																

调 😜 Internet


🔍 100% 📼

GE Display of NAAPS and FLAMBE

March 30, 2008



⇒ GE is only qualitative; but demanded by customer

Automated Distribution of FAROP Data via Metcast Client (Subscription)

- ⇒ Fire and AOD data latency (4h) not suitable for in-line simulations
- ⇒ MODIS near end of life
- ⇒ NPP and JPSS VIIRS data quality is uncertain
- \Rightarrow SDR vs EDR:
 - Dependence on EDRs (produced by others)
 - Burden of processing SDR
 - Latency, data volume, control
 - Need to transition QC/QA to upstream centers
- ⇒ Modeler's needs differ from conventional imagery
 - 'Sparse but accurate' vs. 'Pretty pictures'

⇒ Near-real-time availability of community and foreign datasets to FNMOC

END

Doug Westphal westphal@nrlmry.navy.mil (831) 656-4743

Charles Skupniewicz charles.skupniewicz@navy.mil (831) 656-5104