

Steps towards dust assimilation in a regional NWP model using SEVIRI

Aerosol observability workshop

Yaswant Pradhan

Monterey, 27th-29th Apr 2010

This presentation covers the following areas

- Observation
 - SEVIRI dust optical thickness
 - comparison with MODIS and AERONET
- Dust assimilation
 - preliminary results

SEVIRI dust optical thickness

Y. Pradhan¹, H. Brindley² & R. Saunders¹

¹ Met Office, ² Imperial College

SEVIRI overview

Spinning Enhanced Visible and Infrared Imager

Channel no.		Cha spect	racteristi tral band	ics of (µm)	Main gaseous absorber or window
		$\lambda_{_{cen}}$	λ_{min}	λ_{max}	
I	VIS0.6	0.635	0.56	0.71	Window
2	VIS0.8	0.81	0.74	0.88	Window
3	NIR1.6	1.64	1.50	1.78	Window
4	IR3.9	3.90	3.48	4.36	Window
5	WV6.2	6.25	5.35	7.15	Water vapor
6	WV7.3	7.35	6.85	7.85	Water vapor
7	IR8.7	8.70	8.30	9.10	Window
8	IR9.7	9.66	9.38	9.94	Ozone
9	IR10.8	10.80	9.80	11.80	Window
10	IR12.0	12.00	11.00	13.00	Window
П	IR13.4	13.40	12.40	14.40	Carbon dioxide
12	HRV	Broadban	d (about (0.4 – 1.1)	Window/water vapor

Schmetz et al., BAMS 2002

Dust detection using thermal channels (1)

Dust Convective cells anvils Low clouds Thin mid/low clouds

Courtesy: Pete Francis

Dust detection using thermal channels (2)

MODIS true colour MSG_200905111200_DustIndex IR Dust Index $DustIndex = (BT_{10.8}^{\text{forecast}} - BT_{10.8}^{\text{observed}}) - (BT_{12.0}^{\text{forecast}} - BT_{12.0}^{\text{observed}})$

Quantification of AOD over land

- Based on the IDDI method of Legrand et al. (2001)
- relies on dust's strong absorption in the 10.8µm channel
- uses the dust optical properties described in Volz (1973).
- AOD and the change in BT_{10.8} can be expressed as (Brindley and Russell, 2009)

$$AOD_{550} = c_1(\theta_v).c_2(\theta_v)^{\Delta BT_{10.8}} + c_3(\theta_v)$$

 $c_{1,2,3}$ fitted coefficients as a function of viewing zenith angle θv

Simulation criteria AOD: 0-5, Surface type: (semi) arid, TCWV: 2-20kg/m², Ts: 300-330K, θν: 0-70°

- Met Office operational cloud mask with dust-flags was used to screen out cloud-only pixels
- A 16-day window is considered to obtain a reference (clear-sky) BT_{10.8}
 - corrections were applied to account for the change due to the change in meteorology
- $\Delta BT_{10.8}$ was then obtained by subtracting observed BT from the reference BT

Limitations

- relies on accurate discrimination of dust from cloud
- some level of background dust loading is always present in reality
- signals from the dust layer are difficult to separate when very close to the ground
- may have a reverse effect on BT during nonsunlit period

Day of 2006

Comparison with Aqua/MODIS daily, near real time

© Crown copyright Met Office

Met Office

- semi-operational hourly SEVIRI τ_{550} at near-real-time with a pre-assessed rms ±0.37
- capable to detect and quantify major dust events

Scope for improvement

- dust detection (very thick layers) needs further improvement
- address the impact of dust layer height on the retrieval

Dust assimilation

K. Ngan, Y. Pradhan, M. Brooks & D. Walters

Aerosol / dust forecasting

- Numerical Model
- Dust scheme
- Observations
- Assimilation trials

South Asia Model (SAM)

- Limited area NWP configuration of MetUM introduced in Apr 2008
- Grid 648x400x70 (Mar 2010)
- Horizontal Resolution 12 km
- Vertical lid 80 km

Since dust particles vary widely in size, a discrete representation is necessary. The Met Office scheme (Woodward 2001) uses 6 bins.

- Emission is parameterised using density and relative mass of each size bin.
- Both wet and dry deposition are included.
- Direct radiative effect is included

March 2009-March 2010 (covering 10 AERONET locations over Middle-east and N. Africa)

SAM forecasts against AERONET (no assimilation)

- under-predict AOD at low thresholds (probably due to the absence of non-dust aerosols)
- relatively unbiased for 0.5<AOD<1
- most difficult to predict for larger AOD events

Met Office

 Work within framework of existing incremental 3D-Var (increment resolution: 324x200)

Key elements

- Background statistics obtained via the NMC method
- Observation variable is aerosol optical depth
 - Obs err matrix (R) is assumed to be diagonal (rms error =0.37 from comparisons of SEVIRI with AERONET)
- Control variable is total dust mixing ratio (after Benedetti et al. 2009). Total dust is obtained by summing over all dust bins.

© Crown copyrigh

Background error covariance

Vertical correlations extend throughout boundary layer (level 14 ~ 1.5 km).

Single-cycle Analysis and Background

23-Jan-2010

- Analysed pdf is intermediate between analysed and observed pdfs.
- fails to capture long tail

 Analysis error is smaller than background error for O-B>0

Trial results (1) Trial period: 10 Jan'10 – 10 Feb'10 Met Office

1.7 1.3 2.0 Mon Mar 29 13:38:48 2010

50E

40E

50E

60E

ē

60E

- longer trial including dust events.
- 4d-Var
- More realistic (non-diagonal) observation covariance matrix
- Alternative control variables
- Alternative data sources (e.g. MODIS/VIIRS)

Questions and answers