Biomass Burning Observations for Aerosol Forecasting

Edward Hyer, UCAR VSP Jeff Reid, Cindy Curtis, NRL NRL Aerosol and Radiation Group

Outline

- Context: Role of estimated smoke emissions in an aerosol forecast model
- 2. Data Requirements for Fire Observations
- 3. Challenges of Multi-Sensor Integration
 - 1. Fire Sensor Constellation present + future
 - 2. Specific challenges with Polar Orbiter Data
 - 3. Strategy for Sensor Normalization

The Heart of the Process

= Emissions

+ Fuels Data

Fire Location Data

28 April 2010

Smoke sources in Aerosol Forecasting: If you miss the source, DA helps little.

4. When sources are missed by fwd. model, data assimilation will improve instantaneous analysis, but innovation will be erased in subsequent time steps.

TERRA: 20070812

NRL Aerosol Obs. Workshop

COAMPS: 2007081218

NAAPS: 2007081218

Smoke From Multiple Sources: Demands More from Forward Model

With Data Assimilation, what must the Forward Model Do?

- 1. Do not miss fire events!
- 2. Get injection right
- 3. Get fire timing right
- 4. Separate "high-emission" and "low-emission" events
- 5. Use DA systems to provide feedback to emission models
 - 1. Directly: use innovations to modify source terms at each timestep
 - 2. Indirectly: use DA to test emission hypotheses

Information Requirements

- Latency of Data
 - Faster is better
 - for GEO, should be within one hour
 - for LEO, less strict
 - requires diurnal interpolation
- Data delivered
 - Fire detections
 - location + timing
 - view conditions
 - Satellite Scan pattern
 - scanned
 - not scanned
 - no detection possible
 - Ancillary

- Resolution Requirements
 - Location of Fires (Spatial Resolution)
 - For atmospheric purposes: ~10km
 - For fuels mapping: ~100m
 - Current data sources do not achieve this
 - Ergo, fire location information is incomplete
 - Timing of Fires
 - Hourly
 - Intensity of Fires
 - This is a subpixel property
 - Current products provide information, but application poses challenges

The Global Geostationary Fire Detection Constellation

Global Geostationary Active Fire Monitoring Capabilities (from Elaine Prins, Wisconsin CIMSS)

Satellite					
View Angle					
VIEW Allyle					
	80°				
	65°				

In FLAMBE	
At NRL	

Satellite	Active Fire Spectral Bands	Resolution IGFOV (km)	SSR (km)	Full Disk Coverage	3.9 μm Saturation Temperature (K)	Minimum Fire Size at Equator (at 750 K) (hectares)
GOES-E/-W Imager (75°W / 135°W)	1 visible 3.9 and 10.7 μm	1.0 4.0	0.57 2.3	3 hours (30 min NHE and SHE)	>335 K (G-11) >335 K (G-12)	0.15
GOES-10 Imager (60°W) (Cease operation December 2009)	1 visible 3.9 and 10.7 μm	1.0 4.0	0.57 2.3	3 hours (Full Disk) 15 min (SA)	~322 K (G-10)	0.15
Met-8/-9 SEVIRI (9.5 °E, 0°)	1 HRV 2 visible 1.6, 3.9 and 10.8 μm	1.6 4.8 4.8	1.0 3.0 3.0	15 minutes	~335 K	0.22
FY-2C/2D SVISSR (105 °E / 86.5°E)	1 visible, 3.75 and 10.8 μm	1.25 5.0		30 minutes	~330 K	
MTSAT-1R JAMI (140°E) MTSAT-2 (HRIT) (145°E) Operational 2010	1 visible 3.7 and 10.8 μm	1.0 4.0		1 hour	~320 K (MTSAT-1R) 330 K (MTSAT-2)	0.15
INSAT-3D (83 °E ?, TBD) (Launch 4 th Qtr 2009)	1 vis, 1.6 μm 3.9 and 10.7 μm	1.0 4.0	0.57 2.3	30 minutes	?	
GOMS Elektro-L N1 (76 °E) (2009) GOMS Elektro-L N2 (14.5 °E) (2010)	3 visible 1.6, 3.75 and 10.7 μm	1.0 km 4.0 km		30 minutes	?	
COMS (128 ºE) (Launch 4 th Qtr 2009)	1 visible 3.9 and 10.7 μm	1.0 km 4.0 km		30 minutes	~350 K	

Fire Detection from Polar Orbiters

- MODIS (used in Navy Operations / FLAMBE)
 - greatest sensitivity of all current sensors
 - highest spatial resolution
 - global coverage, incl. high latitudes
- NPP VIIRS (info. from Louis Giglio, SSAI)
 - higher spatial resolution
 - slightly improved coverage
 - saturation issue in Band M15 (10.3-11.3μm)
 - expected to saturate for 75% of MODIS-detectable fires
 - on-board aggregation: saturated+unsaturated = ??
 - No pre-launch characterization of sensor above Tsat
 - Best case: equal or better detection, no characterization
 - A big step up from AVHRR, a step back from MODIS

Others: AATSR, TRMM VIRS (not used for NRT for now)

Multi-Sensor Integration

- Relevant sensor characteristics
 - scan pattern
 - sensitivity
 - detection conditions (saturation, etc.)
- These must be modeled to describe differences between sensors
- Sensor outputs can then be normalized
- Ideal Normalization Metric: Fire Radiative Energy Surplus per area scanned

Factors Affecting Detection

- Fire Properties
 - Size
 - Temperature
 - Shape
- Sensor Properties
 - resolution
 - radiometric precision
 - saturation level

- Detection Conditions
 - view angle
 - background T
 - surface properties
- Diurnal Cycle

What does MODIS detection look like across the scan?

Challenges: LEO sensors

- Wide range of scan angles
- Low Spatial Repeat Frequency

 Requires external input of diurnal cycle
- Complex scan pattern
 - 16-day orbital repeat cycle
 - Daily coverage with high scan angles
 - Nominal overpass time ≠ actual
- However, higher resolution == greater sensitivity

Fire is a highly variable signal 30 minutes is a long time

28 April 2010

- Fire is a highly variable signal
 30 minutes is a long time
 1500m is a big jump
 - 1500m is a big jump

•Spatial resolution of sensors does not allow 100% attribution of fuels in mixed landscapes

•Systematic bias because fires are not evenly distributed spatially (Hyer and Reid, GRL 2009)

•Random error that disrupts spatial/temporal pattern of emissions

Hyer NRL Aerosol Obs. Workshop

28 April 2010

- Fire is a highly variable signal
 - 30 minutes is a long time
 - 1500m is a big jump
- Fire is largely a subpixel phenomenon
 - resolution of obs. is critical
 - satellite-to-ground fire attribution will fail in all but the simplest situations
 - In most cases, satellite sees "fire activity," not "fires"
- Normalization between sensors:
 - is necessarily statistical
 - requires large datasets to compare

Normalization between sensors:

- is necessarily statistical
- requires large datasets to compare

Thanks!

- WF_ABBA team at CIMSS
 Chris Schmidt & Elaine Prins
- MODIS Fire Team
 Louis Giglio, SSAI
- FLAMBE team at NRL

