

Global observations from CALIPSO

Dave Winker, Chip Trepte, and the CALIPSO team NRL, Monterey, 27-29 April 2010

Mission Overview

Features:

Two-wavelength backscatter lidar
First spaceborne polarization lidar
Co-aligned IR and VIS imagers
Launched w/ CloudSat: 28 April 2006
Sun-sync (98°) orbit with A-train
Joint NASA-CNES collaboration

Objectives (in response to IPCC assessments):

- Improved understanding of aerosol & cloud effects on Earth energy budget
- Improved understanding of aerosol sources, transport processes
- Improve predictions of climate, weather, air quality

CALIPSO Payload

CALIOP

aser	Nd: YAG. 2x110 mJ
Wavelength	532 nm, 1064 nm
Repetition rate	20.25 Hz
Receiver telescope	1.0 m diameter
Polarization	532 and ⊥
Footprint/FOV	100 m / 130 µrad
Vertical resolution	30 - 60 m
Horizontal resolution	333 m
∐n. dynamic range	22 bits

Wide-Field Camera (WFC)

Wavelength	645 nm
Spectral bandwidth	50 nm
IFOV / Swath	125 m / 61 km

Imaging Infrared Radiometer (IIR)

Wavelength	8.65, 10.6,12.05 μm
Spectral resolution	0.6-1.0 µm
IFOV / Swath	1 km / 64 km
NETD @ 210K	0.3 K
Calibration	±1 K

CALIOP Level 1 profiles + Cloud/Aerosol Mask

Lidar strengths and weaknesses

Good

- Vertically resolved (30 m)
- Small footprint (70 m), good cloud clearing
- Not restricted by lighting conditions and surface type
 - aerosol day and night
 - over all surfaces (snow, ...)
- Observes aerosol and cloud in the same column
- Depolarization: great for
 - Identifying dust
 - Separating tenuous ice cloud from non-dust aerosol

Bad

- Nadir only
- Limitations due to SNR
- 180-backscatter has limited information

CALIOP Data Products

Level 1 (geolocated and calibrated)

• DP 1.1 - profiles of attenuated lidar backscatter (532, 532, 1064 nm)

Level 2

- DP 2.1A Cloud/Aerosol layer product
 - layer base and top heights, layer-optical depth, aerosol type, cloud I/W phase
- DP 2.1B Aerosol profile product
 - Profiles of backscatter, extinction, depolarization,
- DP 2.1C Cloud profile product
 - Profiles of backscatter, extinction, depolarization, ice/water content
- DP 2.1D Vertical Feature mask
 - cloud/aerosol locations, aerosol type, cloud phase
- Level 3 (in development)
 - Gridded aerosol and cloud statistics

(available at http://eosweb.larc.nasa.gov)

Extinction Uncertainty Estimate

Uncertainty in Particulate Backscatter Coefficients at Altitude n

CALIOP measures clouds too!

ISCCP-IR

High; 200706 to 200708

CALIOP

August IR Low Cloud Coverage

0.6

0.8

1.0

High Cloud (> 440 mb)

Low Cloud (< 680 mb)

Aerosol Optical Depth: MODIS vs. CALIOP

Coakley and Tahnk:

In large, cloud-free ocean regions (to avoid near-cloud effects) find CALIOP 532 nm AOD agrees well with MODIS 550 nm AOD (CALIPSO biased low)

Aerosol type

CALIPSO aerosol type vs. GOCART (Mian Chin)

Preliminary comparisons show model and CALIOP agree on aerosol types and vertical distribution most of the time in cases studied

Regional profile comparisons vs GOCART

CALIOP extinction

GOCART extinction

Aerosol Transport

Studies include

- model verification, skill assessment
- data assimilation and fusion
- forecasts in support of field campaigns

Saharan Dust Outbreak Aug 2006

Long Range Transport: Asian dust (Uno et al, 2009)

CALIPSO orbit paths (red lines), HYSPLIT dust trajectory (white-black thick line) and SPRINTARS simulated dust extinction (tone) along HYSPLIT trajectory CALIOP depol + SPRINTARS

Volcanic plumes: Eyjafjallajökull - 17 April

CALIOP and Volcanoes

Nadir only

- Sparse coverage, significant features can be missed
- Data latency limitations: driven by payload and ground system
 - Latency of standard products ~3-5 days
 - Expedited product latency ~12 hours from ground reception
- Sensitive to ~ 0.01 /km (roughly 10 μ g/m³)
 - vs. engine damage threshold ?
- Identification can be ambiguous
 - volcanic sulfate aerosol + ash (possibly mixed with condensed water) vs. normal cloud
 - more difficult to identify plume as it descends lower in the atmosphere

Multi-sensor observations of Eyjafjallajökull plume

Summary

CALIPSO launched on April 28, 2006

Data is used widely, validation is continuing

- >200 Publications published or submitted using CALIPSO data
- New version of data to be released in May 2010

Likely mission life: thru 2014-16

- Spacecraft and payload currently healthy
- Mission currently funded through 2011
- Fuel to remain in A-train till 2016

Continuity of aerosol profiling:

- ADM (ESA) 2013 (?)
- EarthCare (ESA/JAXA) 2014
- ACE (NASA) 2019 (??)