

JAXA Earth Observation - EarthCARE, GCOM, GOSAT, SMILES -

Atmospheric Composition Forecasting Working Group: Aerosol Observability Meeting April 27-29, 2010 Monterey, CA. Casa Munras Hotel

> JAXA/EORC Tamotsu Igarashi

GOSAT/TANSO-CAI image: Europe and Siberia λ = 870nm, 678nm, 380nm, April 15,16,17 and 18, 2010

White: Cloud, Snow and Sea Ice; Red: Land Vegetation; Yellow: Volcanic Smoke²

Japanese Main Activities of Earth Observation

Long-Term Plan of JAXA Earth Observation

International Cooperation with operational satellites

OCEAN COLOUR IMAGERY FROM LEO

Instrument	Satellite	LST	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202 5
VIIRS	JPSS 2&4	05:30)								(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
MSS-BIO	Meteor-M 3	09:30)				X	X	X	X	X	X								
OCS	Meteor-M 3	09:30)				X	X	X	X	X	X								
MERIS	Envisat	10:00	\mathbf{x}	X	X	X	X	X												
OLCI	Sentinel-3 A	10:00)				X	X	X	X	X	X	X	X						
OLCI	Sentinel-3 B	10:00)							X	X	X	X	X	X	X	X			
MERSI	FY-3 A/C/E/G	10:00	$\mathbf{y} = \mathbf{X}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
SGLI	GCOM-C 1	10:30)						X	X	X	X	X	X						
SGLI	GCOM-C 2&3	10:30)												(X)	(X)	(X)	(X)	(X)	(X)
MODIS	EOS-Terra	10:30	$y \mid X$	X																
COCTS	HY-1 B & C	10:30	\mathbf{x}	X	X	X	X	X												
SeaWiFS	SeaStar .	12:00) X	X																
ОСМ	OceanSat-1	12:00) X	X																
ОСМ	OceanSat-2	12:00)	X	X	X	X	X	X											
MODIS	EOS-Aqua	13:30	$y \mid X$	X																
COCTS	HY-1 D	13:30)		X	X	X	X												
VIIRS	NPP, JPSS 18	3 13:3 0)			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
MERSI	FY-3 B/D/F	14:00)	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
Instrumo	nt class	Channels	with	λ < 1	μm:	< 10	C	hanr	nels v	vith λ	. < 1	μm: >	> 10	Cl	hanne	els w	ith λ	< 1 µ	. <mark>m:</mark> >	10

All bandwidths > 10 nm

Most bandwidths ~ 10 nm

(Courtesy of Dr. Bizzarri, WMO)

Some bandwidths < 10 nm

EarthCARE/Cloud Profiling RADAR

Climate monitoring of earth radiation, cloud and aerosol Cooperation between ESA and Japan (JAXA/NICT)

Mission

- Vertical profile of clouds, aerosol
- Interaction between clouds and aerosol
- Cloud stability and precipitation

Orbit

- Sun synchronous
- Equator crossing time 13:45
- Altitude 400km

Instrument

- CPR (Cloud Profile Radar)
- ATLID (Atmospheric LIDAR)
- MSI (Multi-Spectral Imager)
- BBR (Broad Band Radiometer)
- Task sharing
 - JAXA/NICT (CPR)
 - ESA (ATLID, MSI, BBR, Spacecraft)
- Launch target
 - JFY2013

Global / 3D distributions of clouds and aerosols with EarthCARE and numerical models.

Aerosols Retrieval with ATLID and MSI

- Optical / Microphysical / Radiative properties (Extinction, Size distribution, Single scattering albedo, Optical thickness, Ångström Exponent)
- Type (Soil Dust, Carbonaceous, Sulfate, Sea Salt)
- Component (Dust, Sea-salt, black carbon, etc)

MSI Configuration

- Visible/Infrared Imager
- 150km across track swath
- 500m Ground Sampling Distance
- Cloud and Aerosol detection
- Contextual information for CPR/ATLID processing
- Two optical heads: VNS and TIR

			-			Goal values reflectivity	at low TOA
Band		Centre wavelength [मग्र]	Dynamic range [%]	SNR at 100% reflectivity	тоа	SNR	Reference signal [Wm ² sr ² µm ²]
1	VIS	0.67, +/- 0.01	0-110	500		75	30
2	NIR	0.865, +/- 0.01	0-110	500		65	17
3	SWIR1	1.65, +/- 0.015	0-102	250		18	1.5
4	SWIR2	2.21, +/- 0.015	0-100	250		21	0.5
		Centre	Dynamic	NEDT		Goal requirem	ents
Band		wavelength [मग्र]	tange [K]	NEDT at 220K	NEDT at 293K	NEDT at 220K	NEDT at 293K
5	TIR 1	8.8, +/- 0.05	170 - 350	0.8	0.25	0.6	0.1
6	TIR 2	10.8, +/- 0.05	170 - 350	0.8	0.25	0.7	0.15
7	TIR 3	12.0, +/- 0.05	170 - 350	0.8	0.25	0.8	0.2

MSI

Strategy for MSI data analysis in Japan

2-channel method for aerosol over ocean

→ aerosol optical thickness and Ångström exponent
 (with Cloud flag, Ancillary data, LUTs, and Screening data)

Fig. 1 Relationship between visible and near-IR apparent reflectances for various optical thickness and peak ratio.

3-channel method for aerosol over land

→ aerosol optical thickness
 with Ground albedo, NDVI, Ancillary data,
 LUTs, and Screening data

Synergistic analysis with ATLID retrieval

Fig. 2 flow chart of the aerosol optical depth retrieval algorithm (land) 10

ATLID

ATLID Configuration

355 nm High Spectral Resolution lidar (HSRL)

3 channels:

- Mie scattering co-polar channel
- Mie scattering cross-polar channel
- Rayleigh scattering channel

- Particle extinction coefficient (α)
- Particle backscattering coefficient (β)
- Particle depolarization ratio (δ)

Strategy for ATLID data analysis in Japan

ATLID 3ch. data

- Particle extinction (α)
 Particle backscattering (β)
 Particle depolarization (δ)

Classify main aerosol components in the atmosphere (Water-soluble, Dust, Sea-salt, soot etc) **Retrieve vertical profiles of extinction coefficient** for each aerosol component (T.Nishizawa/N.Sugimoto,NIES)

Global 3D distribution of each aerosol component

+ Cloud properties (H.Okamoto, Tohoku-U, T.Y.Nakajima, Tokai-U) \rightarrow Cloud-Aerosol interaction

 \rightarrow Evaluation and Input data for numerical models (e.g., aerosol transport model, cloud resolving model) Models: NICAM CCSR.U-Tokyo, JAMSTEC; MIROC CCSR.U-Tokyo, etc.

JAXA Aerosol Product

Standard Products (Aerosol)

Sancar(a)	Processing	Product Name	Primary Parameters	Product F	Resolution		Standard Acourtow	
Sensor(s)	Level	Product Mame	Frinary Farameters	Horizontal	Vertical	Release Accuracy	Standard Accuracy	Target Accuracy
		Feature Mask Product	Feature Mask	200m	100m	100%	40%	10%
		Target Products	Target Mask	<u>1km</u> 10km	<u>100m</u> 100m	100%	40%	10%
ATLID	L2a	Aerosol Product	Ext. & Backscat. Coeff. and Lidar & Depolarization Ratio	10km	100m	±60%, 90%, 150%, 150%	±40%, 70%, 110%, 130%	±20%, 50%, 70%, 100%
		Cloud Products	Ext. & Backscat. Coeff. and Lidar & Depolarization Ratio	<u>1km</u> 10km	<u>100m</u> 100m	±50%, 90%, 140%, 150%	±30%, 70%, 100%, 100%	±15%, 50%, 65%, 100%
		Atmospheric Boundary Layer	Planetary Boundary Layer Height	<u>1km</u> 10km	<u>100m</u> 100m	±500m	±300m	±100m

Research Products (Aerosol)

Sensor(s)	(s) Processing Product Name Primary Parameters	Primary Parameters	Product R	esolution		
0011001(0)	Level Aerosol Extinction Coefficient (Water Soluble)			Horizontal	Vertical	
			Aerosol Extinction Coefficient (Water Soluble)			
			Aerosol Extinction Coefficient (Dust)	1km	100m	
ATLID	L2a	L2a Aerosol Extinction Products Aerosol Extinction Coefficient (Sea Salt)		10km	100m	
	Aerosol Extinction Coefficient (Black Carbon)					
			Aerosol Extinction Coefficient (Water Soluble)			
			Aerosol Extinction Coefficient (Dust)			
			Aerosol Extinction Coefficient (Sea Salt)			
ATLID + MSI	L2b	Aerosol Component Products	Aerosol Extinction Coefficient (Black Carbon)	10km	100m	
		11000000	Products Aerosol Size information (Fine-mode) -> mode radius			
MOL		E00				
MSI	LZa	Aerosol Products	Angstrom Parameter (Ocean)	500m	-	

Global Change Observation Mission (GCOM)

Main Mission • Establish and demonstrate the global and long-term Earth observing system (contribute to GEOSS)

• Contribute to improving climate change prediction in concert with climate model research institutions

	GCOM-W	GCOM-C
Orbit	Type : Sun-synchronous orbit Altitude : 699.6 km Inclination : 98.2 degrees Local sun time : 13:30±15min	Type : Sun-synchronous orbit Altitude : 798 km Inclination : 98.6 degrees Local sun time : 10:30±15min
Satellite overview		
Mission life	5 у	ears
Launch vehicle	H2A laur	nch vehicle
Instrument	•AMSR 2	 Global Imager follow-on instrument (SGLI)
Launch	JFY 2011	JFY 2014

Last October, GCOM-W1's participation to "A-Train", afternoon orbit 15 constellation led by NASA/GSFC, and its orbit place was permitted.

GCOM-C Science targets

Radiation budget of the atmosphere-surface system

Today's the most significant factor: atmospheric CO₂

Monitoring and process investigation about cloud and aerosol by GCOM-C & EarthCARE

Figure 2.4. Global average radiative forcing (RF) in 2005 (best estimates and 5 to 95% uncertainty ranges) with respect to 1750 for CO₂, CH₄, N₂O and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). Aerosols from explosive volcanic eruptions contribute an additional episodic cooling term for a few years following an eruption. The range for linear contrails does not include other possible effects of aviation on cloudiness. {WGI Figure SPM.2}

Evaluation of model outputs and process parameterization

Climate models

present and future cloud and aerosol roles in the global warming scenarios

Today's the most significant uncertainty of Radiative forcing is direct/indirect role of cloudaerosol system 16

GCOM-C Science targets

Carbon cycle in the Land and Ocean

Standard and research products

	Common						
Dadianc	• TOA radiance (including	g system					
Naulanc	geometric correction)						
	• Ro • Co	adiation k arbon cyc	oudget by the atmosph le in the Land and Oce	nere-surf an	ace system		
	Land		Atmosphere		Ocean		Cryosphere
Surface	Precise geometric correction		Cloud flag/Classification		Normalized water leaving radiance		Snow and Ice covered area ECV
ce	Atmospheric corrected reflectance		Classified cloud fraction	Ocean	Atmospheric correction parameter	Area/	OKhotsk sea-ice distribution
	 Vegetation index 		 Cloud top temp/height 	COIOI	Photosynthetically	on	Snow and ice
	 Above-ground biomass EC 	Cloud	Water cloud optical thickness /effective	ECV	available radiation		classification
Vegetati	 Vegetation roughness index 	ECV	radius		Chlorophyll-a conc.		forest and mountain
on and carbon	Shadow index		 Ice cloud optical thickness 	In-water	Suspended solid conc.		 Snow and ice surface Temperature
cycle	Praction of Absorbed Photosynthetically		Water cloud geometrical		• colored dissolved organic matter		Snow grain size of shallow layer
	available radiation ECV		Aerosol over the ocean	In-water	Inherent optical		Snow grain size of
Temn	Surface temperature		Land aerosol by near	Temn	• Sea surface temp FCV	Surface	subsurface layer
Temp.	Land net primary	Aerosol	ultra violet	Temp.	Ocean net primary	propertie	Snow grain size of top
	production	ECV	Aerosol by Polarization		productivity	5	layer
Applicati	Water stress trend	Radiation	Long-wave radiation flux		Phytoplankton functional		Snow and ice albedo ECV
on	Fire detection index ECV	budget	Short-wave radiation flux	Applicati	type		Snow impurity
	Land cover type ECV	ECV		on	Redtide		roughness
	Land surface albedo FCV	Blue: st	andard products		multi sensor merged ocean color	Boundary	Ice sheet boundary
		Red: re	search products		multi sensor merged SST		monitoring

Products and SGLI channels

CH	λ	Δλ	L _{std}	L _{max}	SNR	IFOV*3	3	Land			Atmosphere Ocean					Cryosphere																																			
-	VN, F T: į	י: חm גm	V W/r T:	/N, P: n²/sr/µm Kelvin	at L _{std} VN, P: - T: NE∆T	m	Precise Geometrically Corrected Image	Atmospherically Corrected Land surface Reflectance	Vegetation Index including NDVI and EVI	Shadow Index Venetation Roughness Index including RSL P and RSLV	Land Surface Temperature	Fraction of Absorbed Photosynthetically Active Radiation	Leaf Area Index	Above-Ground BIOmass	I and Net Primary Production	Fire Detection Index	Land Cover Type	Land surface ALBedo	CLoud FlaG including Cloud Classification and Phase	Classified CLoud Fraction	Water Cloud Optical Enconess and Particle Effective Radius	Ice Cloud Optical Thickness	Water Cloud Geometrical Thickness	AeRosol over the ocean by Visible and near infrared	Land AeRosol over the land by near Ultra violet	AeRosol by Polarization	LondWave Radiation Flux	ShortWave Radiation Flux	Atmospheric Correction Parameters	Ocean Photosynthetically Available Radiation	Euphotic Zone Depth	CHLorophyll-A concentration	Suspended Solid concentration	Innerent Optical Properties	Sea Surface Temperature	Ocean Net Primary Productivity	PHytoplankton Functional Type	Red TiDe	multi sensor Merged Ocean Color parameters	multi sensor Merged Sea Surface Temperature	Snow and Ice Covered Area	OKhotsk sea-Ice Distribution	Snow and Ice Classification	Snow Covered Area in Forest and Mountain	Snow and Ice Surface Temperature	SNow Grain Size of ShaLlow laver	SNow Grain Size of Subsurface laver	SNow Grain Size of Ton laver	Snow ImPurity	Ice Sheet surface RouGHness	Ice Sheet Boundary Monitoring
VN1	380	10	60	210	250	250	U	U															Г		U		Ι	1 1	ΓE			Ι	Ιl	Jι	J	1	R	R	U				Т			U	Ι	l	JM		Γ
VN2	412	10	75	250	400	250	U	Т	U	U	U	Ι	Ι	Ι	U		U	U						U	Ε		Ι	1 1	Г	U			E	Ξl	J	1	R	R	U									F	₹R		
VN3	443	10	64	400	300	250	U	Т	U	U	U	Ι	Ι	Ι	U		U	U						U			Ι	1 1	Г	U	U	Ε	E	Ξl	J	1	U	U	U		U	U	U	U	S	U	UĽ	sι	JM	S	U
VN4	490	10	53	120	400	250																						~	Γ		U	М	U	l	J	Ι	U	U	U										Ι		
VN5	530	20	41	350	250	250	U	Т		U	U	Ι	Ι	1	U		U	U	U	C (CC	; C	С	С	С	С		٦	Г	U	U	Е		l	JC	Ι	R	R	U	С	U	U	U	U	S	S	S	SE	ΞS	S	U
VN6	565	20	33	90	400	250																						٦	Г		U	М	Εl	Jι	J	1	U	U	U				$ \rightarrow $				$ \rightarrow $		\bot	\bot	
VN7	673.5	20	23	62	400	250						Ц									_		╘	U	Ц		1	1 1	ΓМ		11	1	E	ιι	/	1	R	R	U	4		_	\rightarrow	_	$ \rightarrow $		\perp	\perp	⊥	⊢	
VN8	673.5	20	25	210	250	250	Ε	Т	М	ΜU	U		1	1	E		Ε		U	C (; C	С	С	С	С			R	U					С	1			R	С	U	U	U	U	S	S	<u>S</u>	<u>ς ι</u>	<u> I S</u>	R	U
VN9	763	12	40	350	1200	1000																	M				1	1													R									\bot	
VN10	868.5	20	8	30	400	250																		U			Ι	1	Μ			Τ				Ι			U												
VN11	868.5	20	30	300	200	250	U	Τ	U	UU	U	Ι	1	1	U		U	U	U	C (CC	C	С	С	С	С			R	U					С	1			R	С	U	U	U	U	S	М	S	Sι	JU	R	U
P1	673.5	20	25*1	250*1	250 ^{*1}	1000	U	U		UR			1	1	R	_	R	R			_	_	╘		Ц	Ε			R	R			_					\rightarrow		_			R	_	\perp		\perp	\perp	╇	R	┢
P2	868.5	20	30 *1	300 *1	250 ^{*1}	1000	U	U		UR			1	Ι	R		R	R								Ε			R														R							R	
SW1	1050	20	57	248	500	1000													М	C	CN	1 C	U				Ι	L	R	С						1					U	U	U	U	S	S	R	sι	JS	S	U
SW2	1380	20	8	103	150	1000													U				Г								П										М	U	С	С	C	С	C /	СС	зc	С	
SW3	1630	200	3	50	57	250	U	Т			U				υI	R U	Ε	U	U	C (С	С							R												М	U	U	U	C	С	С	RΙ	JС	С	U
SW4	2210	50	1.9	20	211	1000	U	Т			U		T	T	T	U	U				N	1	U			T	I	1	R			T	T					Т	Τ	T	U		Τ	U	T		Т	T			
T1	10.8*2	0.7*2	300	180~340	0.2	500*4	U				U				Ī	JU			U	CI	U	U	U				1	L							М	Ι		R		М	U	U	U	U	М	S	S	S S	SS	S	
T2	12.0 ^{*2}	0.7 [*] 2	300	180~340	0.2	500*4	U				М				1	JU			U	СΙ	U	U	T				R	R							Ε	Γ				Е	U		R		м		十		T		T

M: Most essential, E: essential, U: used channel, T: correction targets, R: future research, I: indirect use, C: cloud detection, S: Snow detection

*1: defined as intensity of non-polarized light, *2 :Unit is µm, *3: 1km in the open ocean, *4: 250m mode possibility

Green: Succession of GLI standard products, Red: New standard products, and White: research products.

Orbit and SGLI specification

The SGLI features are <u>finer spatial resolution</u> (250m (VNI) and 500m (T)) and <u>polarization/along-track</u> <u>slant view</u> channels (P), which will improve land, coastal, and aerosol observations.

GCOM-C SGLI o	characteristics (Current baseline)										
Orbit	Sun-synchronous (descending local 10:30)	time:									
	Altitude: 798km, Inclination: 98.6d	eg									
Launch Date	Jan. 2014 (HII-A)										
Mission Life	5 years (3 satellites; total 13 years)										
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)										
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)										
Digitalization	12bit	Multi-angle									
Polarization	3 polarization angles for P	obs. for									
Along track	Nadir for VN, SW and T,	674nm and 869nm									
direction	+45 deg and -45 deg for P										
VN: Solar diffuser, Internal lamp (PD), Lunar by pitch maneuvers, and dark current by masked pixels and nighttime obs.											
UII-DUal u	svv: solar ulliuser, iliterial lamp, L	unar, vindow									
campration	T. Black body and dark surrant by	window									
	space window	qeep									
	All: Electric calibration										

SGLI : Second generation GLobal Imager shortwave & thermal InfraRed (T) Scanner (IRS)

Polarization (along-track slant) radiometer (P)

Visible & Near infrared pushbroom Radiometer (VNR)

250m over the Land or coastal area, and 1km over offshore

SCLL channels												
		5	GLI cha	annels								
	λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV						
СН	VN, P, S T: J	SW: nm µm	VN W/m² T: K	I, P: /sr/µm Kelvin	VN, P, SW: - T: NE∆T	m						
VN1	380	10	60	210	250	250						
VN2	412	10	75	250	400	250						
VN3	443	10	64	400	300	250						
VN4	490	10	53	120	400	250						
VN5	530	20	41	350	250	250						
VN6	565	20	33	90	400	250						
VN7	673.5	20	23	62	400	250						
VN8	673.5	20	25	210	250	250						
VN9	763	12	40	350	1200	1000						
VN10	868.5	20	8	30	400	250						
VN11	868.5	20	30	300	200	250						
P1	673.5	20	25	250	250	1000						
P2	868.5	20	30	300	250	1000						
SW1	1050	20	57	248	500	1000						
SW2	1380	20	8	103	150	1000						
SW3	1630	200	3	50	57	250						
SW4	2210	50	1.9	20	211	1000						
T1	10.8	0.7	300	340	0.2	500						
T2	12.0	0.7	300	340	0.2 🗡	500						

250m-mode possibility ~15min /path (TBC)

Swath width of SGLI (observation frequency)

Optimized for detecting seasonal change of land cover, vegetation and ocean color:

Higher (250-m) resolution multi-band & frequent (once/2-3days) observation

Daily coverage of SGLI VNR (Simulated by GLI data on 20 March 2003)

Land aerosol by Near-UV and polarization

- Not only over the ocean, SGLI will estimate land-area aerosols using near-UV (380nm) and polarization channels which are more sensitive to atmosphere scattering rather than land surface reflection.
- Combination of aerosol absorption by Near-UV and fine-mode aerosol properties by polarization.

Near-UV aerosol

Polarization aerosol

Global aerosol optical thickness in June 2003 using the GLI Near-UV (380nm) channel (NIR is used for the ocean area)

Global aerosol optical thickness in June 2003 using POLDER-2 polarization reflectance (provided by T. Sano, Kinki Univ.)

GLI/ADEOS-II Aerosol on April 2003

Aerosol optical thickness of three mode aerosols and soot ratio Get Data from F:\GLI aerosol properties by Higurashi & Nakajima.htm

Tau-a (acc. mode)

Tau-a (soot ratio)

Angstrom exponent

- GLI has NUV channel at λ = 380nm, which has advantage to extract land aerosol with little affect from land surface albedo.
- These data are derived from GLI observation data, using MAP method (Rodgers, 2000) based on three mode (accumulation (= soot+salfate), dust, sea salt) assumption.
- Using this wavelength sensitive to aerosol absorption, volume mixing ratio of soot in accumuration mode areosol is derived. (CCSR/UT, S. Fukuda, T. Nakajima, 2008)

GLI/ADEOS-II Aerosol

Monthly composite image of land (MAP method) and ocean (Higurashi and Nakajima, 2002) aerosols

SGLI Polarimetry

Sensor operation and data distribution policy

• Sensor operation

- ✓ Regular yearly pattern will be prepared considering intensive areas and seasonality before launch
- ✓ Irregular tilt angles of polarimetry, 1km/250m resolution, and calibration modes will be planned more than three months before the operation
- ✓ All data will be received at the Svalbard station; near-real time data at a station in Japan

• Free of charge for internet acquisition

- ✓ The standard products (including Levels 1, 2 and 3) will be distributed with free of charge from EORC information system which is a common system for several other missions (Search & download, and FTP directory: TBD)
- ✓ Re-distribution by users is limited to pre-defined users (to identify users by JAXA)

Basic modes	VN1-8,10-11	VN9, SW1-2	SW3	SW4	T1-2		P1-2	Band	λς
								VN1	380nm
					500m		+45°	VN2	412nm
Day-land/coast	250m	l 1km	250m	l 1km		1km		V/V3	44311111 400nm
					250m**		_45°	1/1/4	530nm
							. 450	VN6	565nm
Day-offshore/polar	1km	1km	1km	1km	1km	1km	+45°	VN7	673.5nm
Day-Onshore/polar							_45°	VN8	673.5nm
							-10	VN9	763nm
					500m			VN10	868.5nm
Night-land	OFF	OFF	250m	1km		-	OFF	VN11	868.5nm
					250m**			<u>P1</u>	673.5nm
					500m			P2	868.5nm
Night-coast	OFF	OFF	OFF	OFF	50011			SW1	1050nm
Night-Coast					250m**			SVV2	1380nm
					200111			SVV3	2210nm
								T1	10 8um
Night-offshore/polar	OFF	OFF	OFF	OFF	l 1km		OFF	T2	12 Oum
								12	26

SGLI basic operation* modes

*: Other modes for cal/val and special requests will be planned more than three months before the operation

**: 250m mode is limited by downlink data volume per a path

GCOM-C products accuracy targets (Standard-1)

Area	group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}
Common	radiance	TOA radiance (including system geometric correction)	TIR and land 2.2μm: both Other VNR,SWI: daytime (+special operation)	VNR,SWI Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km	Radiometric 5% (absolute ^{*3}) ^{*5} Geometric<1pixel	VNR,SWI: 5% (absolute ^{*3}), 1% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.5pixel	VNR,SWI: 3% (absolute ^{*3}), 0.5% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.3pixel
	ret (a	Precise geometric correction	both	250m	<1pixel ^{*6}	<0.5pixel ^{*6}	<0.25pixel ^{*6}
	Surface lectance	Atmospheric corrected reflectance (incl. cloud detection)		250m	0.3 (<=443nm), 0.2 (>443nm) (scene) ^{*7}	0.1 (<=443nm), 0.05 (>443nm) (scene) ^{*7}	0.05 (<=443nm), 0.025 (>443nm) (scene) ^{*7}
	 	Vegetation index		250m	Grass:25%(scene), forest:20%(scene)	Grass:20%(scene), forest:15%(scene)	Grass:10%(scene), forest:10%(scene)
an	ege	Above-ground biomass	Daytime	1km	Grass:50%, forest: 100%	Grass:30%, forest:50%	Grass:10%, forest:20%
0 0	on	Vegetation roughness index		1km	Grass&forest: 40% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
	on a cyc	Shadow index		250m, 1km	Grass&forest: 30% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
	le	fAPAR		250m	Grass:50%, forest: 50%	Grass:30%, forest:20%	Grass:20%, forest:10%
		Leaf area index		250m	Grass:50%, forest: 50%	Grass:30%, forest:30%	Grass:20%, forest:20%
	tempera ture	Surface temperature	Both	500m	<3.0K (scene)	<2.5K (scene)	<1.5K (scene)

Common note:

*1: The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full- and extra success criteria of the mission respectively. Accuracies are shown by RMSE basically.

Radiance data note:

- *2: TOA radiance is derived from sensor output with the sensor characteristics, and other products are physical parameters estimated using algorithms including knowledge of physical, biological and optical processes
- *3: absolute error is defined as offset + noise
- *4: relative error is defined as relative errors among channels, FOV, and so on.
- *5: Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Land data note:

*6: Defined as RMSD from GCP

*7: Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25

GCOM-C products accuracy targets (Standard-2)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}
		Cloud flag/Classification	Both	1km	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount
		Classified cloud fraction	Daytime		20% (on solar irradiance) ^{*8}	15%(on solar irradiance) ^{*8}	10%(on solar irradiance) ^{*8}
Atr	Cloud	Cloud top temp/height	Both		1K ^{*9}	3K/2km (top temp/height) ^{*10}	1.5K/1km (temp/height) ^{*10}
nos		Water cloud OT/effective radius		11	10%/30% (CloudOT/radius) *11	100% (as cloud liquid water ^{*13})	50% ^{*12} / 20% ^{*13}
hq		Ice cloud optical thickness		1 km (scene),	30%*11	70% ^{*13}	20%*13
ere		Aerosol over the ocean	Daytime		0.1(Monthly τa_670,865) ^{*14}	0.1(scene τa_670,865)* ¹⁴	0.05(scene τa_670,865)
	aerosol	Land aerosol by near ultra violet			0.15(Monthly τa_380) ^{*14}	0.15(scene τa_380) ^{*14}	0.1(scene τa_380)
		Aerosol by Polarization			0.15(Monthlyτa_670,865) ^{*14}	0.15(scene τa_670,865) ^{*14}	0.1(scene τa_670,865)
		Normalized water leaving			60% (442 565pm)	50% (<600nm)	30% (<600nm)
	Ocoan	radiance (incl. cloud detection)			00% (443~5051111)	0.5W/m²/str/um (>600nm)	0.25W/m ² /str/um (>600nm)
	color At	Atmospheric correction param			80% (AOT@865nm)	50% (AOT@865nm)	30% (AOT@865nm)
		Photosynthetically available radiation	Daytime	250m (coast) 1km (offshore)	20% (10km/month)	15% (10km/month)	10% (10km/month)
Ocear	Ocean (Chlorophyll-a concentration		4~9km (global)	-60~+150% (offshore)	-60~+150%	–35~+50% (offshore), –50~+100% (coast)
	In-water	Suspended solid concentration			-60~+150% (offshore)	-60~+150%	-50~+100%
		Colored dissolved organic matter			-60~+150% (offshore)	-60~+150%	-50~+100%
	tempera ture	Sea surface temperature	Both	500m (coast) 1km (offshore) 4~9km (global)	0.8K (daytime)	0.8K (day&night time)	0.6K (day&night time)
0	Area/ distributi	Snow and Ice covered area (incl. cloud detection)		250m (scene) 1km (global)	10% (vicarious val with other	7%	5%
No.	on on	OKhotsk sea-ice distribution		250m	10% Sat. data)	5%	3%
spher	Surface	Snow and ice surface Temperature	Daytime	500m (scene) 1km (global)	5K (vicarious val with other sat. data and climatology)	2К	1К
r o	es Sr	Snow grain size of shallow layer		250m (scene) 1km (global)	100%(vicarious val with climatology between temp-size)	50%	30%

Atmosphere note:

*8: Comparison with in-situ observation on monthly 0.1-degree

*9: Vicarious val. on sea surface and comparison with objective analysis data

*10: Inter comparison with airplane remote sensing on water clouds of middle optical thickness

*11: Release threshold is defined by vicarious val with other satellite data (e.g., global monthly statistics in the mid-low latitudes)

*12: Comparison with cloud liquid water by in-situ microwave radiometer

*13: Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)

*14: Estimated by experience of aerosol products by GLI and POLDER

GCOM-C products accuracy targets (Research)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}
Land	Application	Land net primary production	Daytime	1km	30% (yearly)
		Water stress trend	N/A	500m	10% ^{*15} (error judgment rate)
		Fire detection index	Both	500m	20% ^{*16} (error judgment rate)
		Land cover type	Daytime	250m	30% (error judgment rate)
		Land surface albedo		1km	10%
Atmosphe re	Cloud	Water cloud geometrical thickness	Daytime	1km (scene), 0.1deg (global)	300m
	Radiation budget	Long-wave radiation flux			Downward 10W/m2, upward 15W/m2 (monthly)
		Short-wave radiation flux			Downward 13W/m2, upward 10W/m2
Ocean	Ocean color	Euphotic zone depth	Daytime	250m (coast), 1km (offshore), 4~9km (global)	30%
	In-water	Inherent optical properties			a(440): RMSE<0.25, bbp(550): RMSE<0.25
	Application	Ocean net primary productivity		500m (coast), 1km (offshore), 4~9km (global)	70% (monthly)
		Phytoplankton functional type		250m (coast), 1km (offshore), 4~9km (global)	error judgment rate of large/ small phytoplankton dominance<20%; or error judgment rate of the dominant phytoplankton functional group <40%
		Redtide			error judgment rate <20%
		multi sensor merged ocean color		250m (coast), 1km (offshore)	-35~+50% (offshore), -50~+100% (coast)
		multi sensor merged SST	Both	500m (coast), 1km (offshore)	0.8K (day&night time)
Cryosphere	Area/ distribution	Snow and ice classification	N/A	1km	10%
		Snow covered area in forest and mountain	Daytime	250m	30%
	Surface properties	Snow grain size of subsurface layer		1km	50%
		Snow grain size of top layer		250m(scene), 1km (global)	50%
		Snow and ice albedo		1km	7%
		Snow impurity		250m(scene), 1km (global)	50%
		Ice sheet surface roughness	N/A	1km	0.05 (height/width)
	Boundary	Ice sheet boundary monitoring	N/A	250m	<500m

Research product note:

*15: Evaluate in semiarid regions (steppe climate etc.)

*16: Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

Greenhouse Gases Observing Satellite (GOSAT)

GOSAT enables global (with 56,000 points) and frequent (at every 3 days) monitoring CO_2 and CH_4 column density. (Launched in Jan 2009)

Current Ground-based Observation Points (320pts) Provided by WMO WDCGG

Increase of Observation Points using GOSAT (56,000pts)

Column-averaged volume mixing ratios of CO₂

April, July and November, 2009 and January, 2010

Available from Website of NIES, February 18, 2010: http://www.gosat.nies.go.jp/eng/related/download/GOSAT_20100216_en.pdf₃₁

Column-averaged volume mixing ratios of CH₄

April, July and November, 2009 and January, 2010

Available from Website of NIES, February 18, 2010:

http://www.gosat.nies.go.jp/eng/related/download/GOSAT_20100216_en.pdf³²

SMILES Observation Mission

SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder)

- High sensitivity in detecting atmospheric limb emission of the submillimeter wave range (624-650GHz)
- Vertical profiling (~3km) from JEM/ISS with latitudinal coverage of 65N to 38S

SMILES observations aim to radical components which play important ³³ roles in ozone chemistry.

Target Species and Brightness Temperature Spectrum

- Standard products:
 - Single-scan: O₃, HCI, CIO, CH₃CN, O₃ isotopes, HOCI, HNO₃
 - Multi-scan: HO₂, BrO
 (* spectrum signals are too weak to retrieve in single-scan)
- Research products: volcanic SO₂, H₂O₂, Humidity in uppertroposphere, ice clouds

Early Results from SMILES onboard JEM/ISS, Oct. 12, 2009

Copyright (C) 2010 by Kyoto Univ. & JAXA

- Global Ozone Layer Map at altitude 28km
- Ozone Latitude-Altitude Distribution

http://smiles.tksc.jaxa.jp/news/indexj.shtml http://smiles.tksc.jaxa.jp/indexe.shtml 35

Summery

- GOSAT and SMILES are in operational phase, and observation data are available.
- ESA and Japan cooperative project of EarthCARE to be launched in FY2013, and JAXA will provide aerosol data sets.
- GCOM-C1/SGLI will be launched in Japanese FY2014, and will provide aerosol data sets.