

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC Update: MONARCH model

<u>Oriol Jorba</u>, Carlos Pérez-García Pando, Vincenzo Obiso, Enza DiTomaso, Sara Basart, Marc Guevara, María Gonçalves, María Teresa Pay, Carles Tena, Francesca Macchia, Miriam Olid, Kim Serradell

> Atmospheric Composition Group Barcelona Supercomputing Center

10th ICAP WG meeting - Exeter (UK)

7/06/2018

Contents

- Overview MONARCH model and updates on BSC forecast
- Multiscale capability of MONARCH model
- Intensive optical properties evaluation
- Data Assimilation work

Overview MONARCH model and updates on BSC forecast

Barcelona Supercomputing Center Centro Nacional de Supercomputación

The MONARCH model

- · Multiscale: global to regional (up to 1km) scales allowed
- · Fully *on-line* coupling: weather-chemistry feedback processes allowed
- · Enhancement with a *data assimilation* system

4 additional prognostic tracers (SO2, DMS, H2O2, H2SO4) 3 online or climatological oxidants (OH, O3, HO2) gas-phase oxidation of SO2, DMS and H202 by OH aqueous-phase oxidation by H202 and O3

SU

0.07µm....

Nitrate (NO3) and Ammonium (NH4): as calculated by EQSAM thermodynamic equilibrium model but not evaluated yet

MONARCH - Emissions HERMES 3.0: A multiscale emission modelling

- A stand-alone tool for simulating emissions on a user-defined grid for global, regional and urban air quality models.
- Users can **select**, **combine and scale multiple inventories** through a flexible configuration file to obtain **hourly gridded emissions**.
 - ✓ Spanish bottom-up emission inventory (street level emissions)

Guevara et al., in preparation

Autosubmit workflow manager

- Workflow manager developed at BSC
- Manages all the tasks associated to a model experiment
- Submits jobs in HPC systems and post-process results in local machine
- Flexible to configure and easy to modify dependencies
- Forecast systems of BSC ported to Autosubmit

BSC Current forecasts and plans

CURRENT FORECASTING – DEVELOPED/AVAILABLE – UNDER DEVELOPMENT - PLANNED

DOMAIN	GLOBAL (ICAP)	REGIONAL North Africa, Middle East and Europe (SDS-WAS)	REGIONAL Europe/Iberian Peninsula/Urban Areas (CALIOPE)
Model	MONARCH	MONARCH	CMAQ (DREAM for dust) MONARCH
Status	QO	0	0
Meteorology	Inline: NMMB	Inline: NMMB	Offline: WRF-ARW Inline: NMMB nesting
Resolution	1.4x1 deg 0.7x0.5 deg	0.1x0.1 deg 0.03x0.03 deg	0.1x0.1 / 0.04x0.04 / 0.01 x0.01
lovelo	24	40	30
leveis	48	60-70	60-70
DA	LETKF	LETKF	NA LETKF
Assimilated Obs	MODIS DT+DB (DU) MODIS DT+DB (ALL)	MODIS DT+DB (DU)	NA MODIS DT+DB (ALL)
Aerosol Species	<i>DU, SS, BC,</i> <i>POA, SOA bio</i> , SOA anthro, <i>SU</i> , NI	DU	CMAQ (AERO5) MONARCH aerosols
Gas phase chemistry	CBM-IV CB05 ONLINE and CLIMATOLOGY		CB05 CB05
Emissions	HERMES 3.0 (HTAP v2) MEGAN ONLINE		EMEP, MEGAN / HERMES, MEGAN/ HERMES MEGAN
Bio. Burn. Emissions	GFAS NRT		NA NRT

Multiscale capability of MONARCH model

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MONARCH - BSC forecasts

Supercomputing

ieniro Nacional de Supercompulación

Center

Regional 20100715 at 12UTC O3 -UMO nnmv 60E 30W 30E 0.04 0.05 0.06 0.07 0.08 0.02 0.03 0.09 0.1 0.2 ✓ BDFC and SDS-WAS dust forecast ✓ It will be operational at

CALIOPE (<u>www.bsc.es/caliope</u>) AQ Forecast System for EU and Spain

And more products in: http://www.bsc.es/ess/

Mineral dust forecasting at wide range of spatial scales

14 July 2011 at 18h – Haboob development

On the evaluation of global sea-salt aerosol models at coastal/orographic sites (Spada et al., 2015)

- Global run (1º x 1.4º, 2002.2006)
- Regional run (0.1º x 0.1º, 2002-2006)
- Two sea salt emission schemes:
 - ✓ Gong (2003) function of wind speed
 - ✓ Jaeglé et al. (2011) function of wind speed and sst

Impact of scales on surface ozone using full chemistry CB05

Intensive optical properties evaluation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

AOD evaluation: AERONET, MODIS

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Aerosol intensive optical properties evaluation (Obiso, 2018)

CONTEXT AND OBJECTIVES

- Aerosol intensive optical properties: few and uncertain model evaluations [1,2,3,4]
- Evaluation of full online aerosol-radiation coupling in NMMB-MONARCH
- > Single scattering albedo (ω) and asymmetry factor (g) against observations
 - > Impact of **new refractive indexes** on model performance
 - MONARCH Global aerosol parameterization: 5 major aerosols
 - Optical properties of aerosols in radiation from OPAC database
- **Global domain simulations**: *lon* x *lat* = $1.4^{\circ}x1.0^{\circ}$ and 48 vertical layers
- 5-years period (**2012-2016**): spinup (1 year) and meteo initialization (24h, FNL)

1.Myhre et al. [2013a]; 2.Lacagnina et al. [2015]; 3.Takemura et al. [2002]; 4.Curci et al. [2015]

Updating microphysics (PTB case) [1]:

1.Hansen and Travis [1974]; 2.Denjean et al. [2016]; 3.Irshad et al. [2009]; 4.Shepherd et al. [2017]; 5.Tang et al. [2016] 6.Kirchstetter et al. [2004]; 7.Nakayama et al. [2012]; 8.Liu et al. [2013]; 9.Bond and Bergstrom [2006]; 10.Freedman et al. [2009]

Sun-photometers **AERONET** Version 2.0 [1,2]

- Screened Level 1.5: Level 2 quality without optical depth filter: T440 > 0.4 [3]
- > 59 stations (full set): 20 data (daily T, ω , g at 0.550 µm) per month (2012-2016)
- 12 stations (subset): i) observed τ, ii) dominant species, iii) geographical distribution

1.Holben et al. [1998]; 2.Holben et al. [2006]; 3.Li et al. [2014]

≻

≻

≻

7-Cairo_EMA_2

≻

≻

≻

29-La_Parguera

0,2

0,0

J F M A M J J A S O N D

months

4-Beijing

- → Slight ω increases \leftrightarrow OM+SU changes
- Slight g decreases ↔ SU changes
- > Stronger ω increases \rightarrow less BC?

Data assimilation work

Barcelona Supercomputing Center Centro Nacional de Supercomputación

European Research Area for Climate Services

Produce a high resolution dust reanalysis for Northern Africa, Middle East and Europe covering the satellite era of quantitative aerosol information, and develop dust-related services tailored to specific socio-economic sectors.

PI: Sara Basart Period: 2017-2020

First test simulations: assimilated obs

40°N 25°N MODIS Deep Blue, L2 C6 10°N 5°S

- AE, ω filter, coarse AOD retrieval
- highest quality flag (Ginoux et al., 2012; Pu & Ginoux 2017)
- uncertainty model based on Sayer et al., 2014

AOD (550nm) MODIS DB L3 2012030112

EXCELENCIA

6.4

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

First test simulations: monthly analyses

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens analysis Dust AOD (550nm), ens analysis 201203 20120 201202 40° 40°1 40°N 30°I 30° 30°N 20° 20°N 20°N 10°I 10.01 10°N 30°E 40°E 50°E 30°E 40°E 20°W 10°E 20°F 30°E 40°E Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis 20120 201205 201206 40.01 40.01 40.01 30°N 30°N 30°N 20°N 20°N 20% 10°N 10°N Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis 201208 20120 50% 50° 40°N 40°N 40°N 30°N 30°N 30°N 20°N 20°N 20°N 10° 10° 20°W 40°E 20°W 10°W 10°E 20°E 30°E 40°E 60°E 20°W Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis Dust AOD (550nm), ens_analysis 50°! 50° 40°N 40°N 40°N 30°N 30°N 30°N 20°N 20°N 20°1 10°N 10°I 0*

Year 2012

Resolution 0.1°

Next tasks:

- close-to-optimal configuration for the ensemble

- tuning of DA parameters

- treatment of the observations.

20°W 10°W

10°E 20°E 30°E 40°E 50°E 60°E

20°W 10°W 0°

10°E 20°E 30°E 40°E 50°E

60°

20°W 10°W

Aerosol_cci project

Barcelona Supercomputing Center Centro Nacional de Supercomputación

European Space Agency

climate change initiative

IASI dust AOD

- observations available day time and night time
- over ocean and over land (desert)
- 10 μm: detection of dust aerosol coarse mode (infrared wavelengths and "V" shaped depression of the Brightness Temperature)
- pixel level uncertainty

2006	2012	2018	2021	2028	2035
IASI/	IASI/	IASI/	IASI-NG/	IASI-NG/	IASI-NG/
Metop-A	Metop-B	Metop-	Metop-SG	MetopSG-B	MetopSG-C

Aerosol_cci: IASI analyses

Updates: case study completed with the latest version of products provided by the retrieval teams and over an extended period (Mar-Jun 2015)

XCELENCIA

Barcelona

Supercomputing Center

Nacional de Supercomputaciór

- Overall all the retrievals tend to produce an analysis that underestimates dust AOD (close to sources), with the exception of MAPIR;
- The assimilation of the IMARS product produces the least encouraging scores;
- The assimilation of LMD product is globally overall neutral (but with improvement in the correlation to AERONET in the Atlantic transport);
- Slightly reduced RMSE and higher correlation coefficients than the Control experiment are reported globally for the DA-MAPIR and DA-ULB experiments.

Exercise on observation uncertainty

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Free-run

ULB AOD_unc

- > Relevant impact of the observation error characterization
- > Further studies on the characterization of observation uncertainty for DA are needed

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

10th ICAP WG meeting - Exeter (UK)

7/06/2018