

PMAp v.2.2 Aerosol Optical Properties operational retrieval at global scale

R. Lang, <u>A. Cacciari</u>, A. Holdak, M. Grzegorski, R. Munro, B. Fougnie J. Chimot, R. Lindstrot, G. Poli, R. Huckle, N. Hao, S. Gimeno Garcia

OUTLINE

- Sensors' characteristics and PMAp Aerosol product
- > PMAp retrieval algorithm: current operational version 2.1
- ➢ New release: version 2.2
 - Impact of the new features
 - IASI IR spectral information for improved ash and dust detection
 - degradation correction for GOME-2 PMD radiances
 - AERONET Validation outcome

What's next

The Polar Multi-sensor Aerosol Product Operational near-real time AOD from EPS/Metop

PMAp: Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI on Metop

- AOD @550nm over land & water aerosol type classification
- at GOME-2 PMD spatial resolution 10x40 km² Metop-B; 5x40 km² Metop-A
- <u>Retrieval over water</u> fully operational product since October 2014
- <u>Retrieval over water & land PMAp version 2</u> fully operational product since February 2017

PMAp/A & PMAp/B v2.1 over ocean and land assimilated by CAMS

PMAp: creating a hyper-instrument Merging spectral and spatial information from GOME-2, AVHRR and IASI

PMAp input data

> METOP Level-1 data

Instrument	Spatial resolution	Spectral range	comments
GOME PMD	10 x 40 km Metop-B 5 x 40 km Metop-A	311nm-803nm, 15 bands	AOD, aerosol type, AAI Stokes fraction (polarization)
AVHRR	1.08 x 1.08 km	580nm-12500nm, 5 bands	Clouds, scene heterogeneity, dust/ash
IASI	12km (circular)	3700–15500nm, resolution 0.5 cm ⁻¹	volcanic ash, desert dust, aerosol heights

> Auxiliary data & static DB

Data		Pourpose	comments	
ECMWF forecast - Wind speed - Surface pressure		ocean reflection parameterizationRayleigh scattering over land	temporal interpolation	
Surface Reflectance DB GOME2 LER DB (angular dependent)		- over land retrieval	Minimum LER (from G.Tilstra, KNMI)	
Surface elevation DB E-TOPO5		- over land retrieval		
RT data LUT - TO Stokes fraction for	A Reflectance and r 28 aerosol models	- RT calculation interpolation	Hasekamp et al., 2008	

PMAp AOP retrieval algorithm design

v 2.1 current operational release

EUMETSAT

PMAp AOP retrieval algorithm design

towards v2.2 – next operational release

Cloud / Aerosol Discrimination

- Volcanic Ash Detection
 10 set of thresholds tests AVHRR + IASI BTDs tests → Ash presence

- Desert Dust Detection IASI dust index → Dust presence

Clouds' Detection & Correction
 clouds detection and cloud fraction calculation (CF)
 cloud free PMD Reflectance .OR. PMD Reflectance Correction (for CF < 0.65; partly cloudy pixels)

- Preliminary Aerosol Type

if Ash presence \rightarrow aerosol type = ash if Dust presence \rightarrow aerosol type = dust VIS/NIR test for Coarse/Fine mode determination

list of preselected aerosol types

best {AOD, aerosol type}

Retrieve AODs

 AODs retrieval for all aerosol models in the LUT over water PMD 12 (617.867 - 661.893 nm) over land PMD 8 (399.581 - 428.585 nm) or PMD 7 (380.186 - 383.753 nm)

best fit selection

- Microphysics fit : $\chi 2$ minimization of the AODs
 - if cloud free: list of preselected aerosol types if partly cloud: all aerosol models
- Estimation of error on AOD

EUM/GES/TEM/07/2025, v2U, 12 January 2018

The Polar Multi-sensor Aerosol Product Operational near-real time products from EPS/Metop

16 05 2018 MetopB

Product delivery features

• NRT 3 minutes granules: maximum 3 hours after sensing time - Available via EUMETCast in netcdf4.

• Full orbit offline data - Available from the EUMETSAT archive EPS native and netcdf4. http://archive.eumetsat.int

PMAp v.2.2 AOP retrieval

Dust detection scheme

Unified approach to detect aerosol type exploiting the IR spectral range

Distance approach

Set of 'polluted' spectra ash, dust, same aerosol type

 μ_p mean spectra by RTM simulation $\mu_p = K + \mu_c$ or measured Set of clear spectra not affected by aerosol

 μ_c mean spectra S_c clear covariance matrix

Atmos. Chem. Phys., 13, 2195–2221, 2013 www.atmos-chem-phys.net/13/2195/2013/ doi:10.5194/acp-13-2195-2013 © Author(s) 2013. CC Attribution 3.0 License. Atmospheric Open Action of the Action of the

A unified approach to infrared aerosol remote sensing and type specification

L. Clarisse¹, P.-F. Coheur¹, F. Prata², J. Hadji-Lazaro³, D. Hurtmans¹, and C. Clerbaux^{3,1}

$$R_N = \frac{\left(\mu_p - \mu_c\right)^T S^{-1}}{\sqrt{\left(\mu_p - \mu_c\right)^T S^{-1}(y - \mu_c)}} \quad (y - \mu_c) \ge \text{ threshold}$$

 $R_N = G (y - \mu_c) + C \ge$ threshold

Y = measured spectra G = f (λ , surf_type) C = bias correction; f (lon,lat) threshold to be manually tuned

PMAp AOP retrieval desert dust detection

21 08 2017 MetopB

PMAp AOP retrieval desert dust detection

21 08 2017 MetopB

The Polar Multi-sensor Aerosol Product Operational near-real time products from EPS/Metop

16 05 2018 MetopB

AOD @ 550 nm

Aerosol Class fine mode coarse mode volcanic ash / thick dust volcanic ash with SO₂

16 – 23 / 05 GFS/ NCEP / Wind @700hPa

PMAp v2.2 AOP retrieval

Lev1B \rightarrow Lev1C : impact on AOD retrieval

EUMETSAT

PMAp AOP retrieval Lev1B → Lev1C : impact on AOD retrieval

27 12 2016 MetopB

PMD 8 (399.581 - 428.585 nm)

PMD 7 (380.186 - 383.753 nm)

PMAp AOP retrieval Lev1B → Lev1C : impact on AOD retrieval

27 12 2016 MetopA

ME-2_2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 7 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 2MD-P Reflectivity Degradation-Model plus 366 days Forecast. View Pos: 13 IE-2 1.4 1.4 800 800 800 800 1.3 1.3 1.3 1.3 E 700 1.2 1.2 1.2 1.2 700 700 700 1.1 1.1 1.1 1.1 E 600 E 600 1 600 E 600 0.9 0.9 0.9 0.9 N 500 × 500 500 500 0.8 0.8 0.8 0.8 0.7 0.7 400 400 400 400 0.6 0.6 0.6 300 300 300 300 0.5 04/08 08/09 12/10 05/12 09/13 02/15 06/16 11/17 04/08 08/09 12/10 05/12 09/13 02/15 06/16 11/17 04/08 08/09 12/10 05/12 09/13 02/15 06/16 11/17 04/08 08/09 12/10 05/12 09/13 02/15 06/16 11/17 Date mm/yy Date mm/yy Date mm/yy Date mm/vv

18 EUM/GES/TEM/07/2025, v2U, 12 January 2018

EUMETSAT

PMAp Validation Data Set AERONET Data Set period 1. June - September 2013 Co-located: 30 min & 30 km period 2. February - May 2015 AERONET AOD @ 550 nm PMAp vs AERONET PMAp vs AERONET

Over Ocean 23 sites

Over Land 121 sites

Water surface

PMAp 2.1 vs Aeronet Lev2 Over Ocean

	June - So	ept 2013	Feb-May 2015		
	METOP-B	METOP-A	METOP-B	METOP-A	
gain	0.838	0.783	0.493	0.535	
bias	0.076	0.045	0.115	0.084	
correlation	0.870	0.836	0.777	0.871	
N	110	90	22	51	

	Algorithm					
Metric	ADV/ASV		ORAC		SU	
-	V1.0	V2.3	V1.0	V3.02	V1.0	V4.21
		Over (Dcean			
number of points	75	64	65	102	13	52
bias	0.04	0.02	0.07	0.10	0.06	-0.002
RMSE	0.16	0.09	0.15	0.16	0.08	0.06
correlation	0.58	0.89	0.81	0.93	0.89	0.86
GCOS fraction (%)	17	66	46	31	15	58

PMAp 2.2 vs Aeronet Lev2 Over Ocean

	June - Sept 2013		Feb-May 2015	
	METOP-B	METOP-A	METOP-B	ΜΕΤΟΡ-Α
gain	0.949	0.922	0.836	0.744
bias	0.098	0.049	0.044	0.091
correlation	0.549	0.819	0.873	0.81
N	110	92	19	60

(Popp et al. 2016)

Water surface

AOD @ 550 nm PMAp/METOP-B

Land surface

PMAp 2.1 vs Aeronet Lev2 Over Land

	June -	· Sept 2013	Feb-May 2015		
	METOP-B	METOP-A	METOP-B	METOP-A	
gain	0.597	0.752	0.540	0.503	
bias	0.113	0.081	0.168	0.158	
correlation	0.589	0.636	0.552	0.612	
N	906	830	1232	1000	

PMAp 2.2 vs Aeronet Lev2 Over Land

	June - Sept 2013		Feb-May 2015	
	METOP-B	METOP-A	МЕТОР-В	METOP-A
gain	0.762	0.979	0.839	0.615
bias	0.128	0.057	0.189	0.108
correlation	0.431	0.541	0.559	0.644
N	931	838	1675	1205

Metric				Algo	orithm		
		ADV/ASV		ORAC		SU	
		V1.0	V2.3	V1.0	V3.02	V1.0	V4.21
			Over	Land			
number of	points	306	185	262	262	138	343
bias		-0.005	-0.05	0.03	-0.002	-0.001	-0.0
RMS	3	0.16	0.13	0.16	0.08	0.08	0.11
correlat	ion	0.59	0.66	0.59	0.86	0.72	0.82
GCOS fract	ion (%)	37	54	40	51	46	62

(Popp et al. 2016)

PMAp v2.2 AOP retrieval

What comes next?

- PMAp v.2.2 validation data set delivered to CAMS for evaluation Internal Validation Review Board Product ready for dissemination by September 2018 Metop-A and Metop-B
- PMAp operational chain tests for Metop-C launch scheduled on 21 September 2018 extending the 2006 - 2017 data record to 2006 - 2027

Thank you

