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OUTLINE:

What do we need to know about physics of dust emission?

. To represent dust effects on weather and

Joes dust flux
depend on wind speed and 50|I conditions?

i Mineral Dust Impacts on Climate}

ust impacts the ust can alter the From

u;
p rti by acting biogeochemical cycles Earth's albedo by

of the ocean and land stimulating algae M ah Owal d et

loud
d I ts d ice by transporting and growth or depositing

REE depositing nutrients on snowlfice al . (2014)




Emitted dust size distribution in models

s Emitted dust size

distribution poorly
understood

s Measurements: size-
resolved vertical
dust flux from

—
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Norm. volume size distr. (d V. /dIn D )
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= Models —
overestimate _
small particle 1E-3 :
fraction A L LS s 1

Dust aerosol diameter, D, (pm)

[ Wh at d ete rm i n eS Measurements: Gillette et al. (1972, 1974), Gillette (1974), Sow et al. (2009)
dust size
distribution?



Macrophysics of dust emission: Saltation

= Dust aerosols (~0.1-50 um) are emitted by saltation, the
wind-driven hopping motion of sand grains (~200 um)

= Dust aerosols experience large cohesive forces that generally
prevent direct lifting by wind (e.g., Kok et al., 2012)

Smaller particles
ejected by larger
saltating particles
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Microphysics of dust emission:
-ragmentation of dust aggregates

Small particles (< ~20
um) in desert solls
form aggregates

Upon impact, energy L g
i S tran Sfer r ed from From Diaz-Hernandez and Parrage (2008)

Impactor to aggregate
|mpact ‘
= \What is final state of energy

aggregate? Does It

fragment? Into what
particle sizes? O+ +@+‘



Analog: fragmentation of brittle materials

Analog: brittle

 Dust aggregate

Dust aggregate

fragmentation is very fragmentation: | | e
complex problem @#mml :
energy

e Closest analog is o, €§+ @;@

fragmentation of brittle

materials (e.g., glass)
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Brittle material ;
% % fragmentation
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 Measurements show brittle
size distribution Is scale-
Invariant (a power law)
— Resulting size distribution:
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Theory In agreement with measurements

15

* Derived simple equation:

dN = ¢ X — & 3 erf[ln(Dd/Dsoil)]
dnD, D; ex'o[ (ﬁj H’H 2o },
e

soil
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Scale Large-size cumulative soil fraction

invariance cutoff (= correction for
discrete particles)
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=N = number of aerosols; D, = aerosol
Size ; ¢ = normalization constant __Haeies amstel )
= Only “fitting” parameter: A = 12 um ol A (20TL), FIUAS, 205, 1010
from least squares fit to

measurements | t
D, and o, describe soil size + ;n;epfc —)
distribution gy

 Theory in good agreement with
avallable measurements Q+ +@+.




Theory consistent with subsequent
measurements
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i Theory (Kok, 2011)
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Dust aerosol diameter, D (um)

» New measurements of emitted dust size

distribution were published by Shao et al. (2011)
and Rosenberg et al. (2014)
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Consistent with In situ measurements
over North Africa

- 2 Due to iplet _ .
Q ' difficulties, -
= 1 - different distances ™~~~ nqé: ‘qu |
- ] from source, soil 5
S5 jProbably due  \griability? o]
> 1  to other > ]
°) aerosols .
~ o
g { (Weinzierl et g
E,’ al. ‘09)
s 0.15 \ =
D N ]
N - ) McConnell et al. (2008) .
7)) i R A Chou et al. (2008), B160N3 \
) . &Y v Chou et al. (2008), B165N7
£ YO A Osborne et al. (2008), B160
= w Osborne et al. (2008), B165
© 0.01- < Weinzierl et al. (2009), L02 | A
= ] > Weinzierl etal. (2009), LO7 | °
= ] O Ryderetal. (2013) ]
B . Theory (Kok, 2011a) .
Z L N I : * ! s : LR |
0.5 1 10 20
Dust aerosol diameter, D, (nm)

From Mahowald, Albani, Kok et al. (2014)



Implication: current models
overestimate dust coollng

s Models have too much
fine dust, not enough
coarse dust

= Since fine dust cools and
coarse dust warms,
models overestimate dust
cooling

= AeroCom models: dust is
strongly cooling, —-0.4
W/m? at TOA

= Correcting —halves dust direct
radiative effect [95% CI: -0.48
to +0.20 W/m?]
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OUTLINE:

What do we need to know about physics of dust emission?

a TO represent dust effects on weather and
climate, models need to know:

2. How much dust is emitted? How does dust flux
depend on wind speed and soil conditions?

Dust impacts the F rom
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Are current dust flux parameterizations
missing important processes?

= Dust flux (W= Fa[X 8§ X Coune
measurements grid cell \ | \

show large spread vertical| Source Global

dust flux] function tuning
o (small const
= EXISting A4 scale)
parameterizations
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Most current dust modules use
empirical source function

“Source function” (S)
parameterizes variability in “soil
erodibility” (=dust flux per unit
wind stress)

Empirical source function cannot
capture full climate change
response

= Current models cannot capture

decrease in N.-African dustiness
since ‘80s (Evan et al. 2014)

= Due to missing processes?
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Basic vertical dust flux equation

f mfrag
\_'_l

Fraction of impactsj Dust aerosol mass
producing per fragmentation
fragmentatio event

frag

Vertical Number of
dust flux saltator impacts

= Know n, and m:., from theory (e.g., Shao et al.,
1993; Kok et al., 2012).

n, oc p, (U2 —uft)‘

m

| OCf

frag clay

= How does fragmentation fraction £, ,, depend
on wind () and soll () conditions?

= Calculate £, = f(u., Ux) using numerical saltation model
COMSALT (Kok & Renno, 2009)



How does fragmentation fraction (f;,,)
depend on friction velocity (u.)?

= For highly erodible soils:
= Most saltator impacts produce
fragmentation
» 2 fag —CONstant with vu.

s For erosion-resistant soils:

= Only energetic saltators emit dust
Their fraction increases with .
= frag INCreases sharply with u.!

n frrag SCales with (u./ u.)°
= ‘Fragmentation exponent’ o scales

With U

= Confirmed by measurements
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How does fragmentation fraction (f;,,,)
depend on threshold friction veloc:lty(u*t)

Increase in u., makes soil more resistant
to erosion
—~ Reduction in £, as u. increases

firag decreases exponentially with u
= Confirmed by measurements

Larger u. = soil more erosion resistant

= Decrease in dust flux for given saltator
impact flux — not in current GCMs!

= Climate partially determines u.; = many
models underestimate dust cycle
sensitivity to climate changes!
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Proposed vertical dust flux parameterization

p, (U2 -u?)
‘EE'OC\ U JX \—,—'ffrag X ‘fclay

Vertical Y Fraction of impacts Scales dust
dust flux Scales saltator producing mass per
Impact flux fragmentation fragmentation
event
n And %, IS given by:
C Yrt—Uxo
a
U.. Uto U..,
f. o xexp| —C, —
frag U € U
*t *t0
J . J
Y Y
Due to increase in high- Due to increasing resistance
energy saltators with u* to erosion with U

= Full details in Kok et al. (2014), Atm. Chem. Phys., Part 1, 14, 13,023



Comparison against dust flux measurements
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K14 parameterization improves CESM
agreement with measurements

s Pattern of dust

emission

coefficient (C,)

similar to S

= Improves
model
agreement

against AERONET
(in CESM)

= Also
Improvement on
seasonal and
daily timescales

s K14 eliminates
need for
source
function (in
CESM)

AERONET vs model AOD
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K14 parameterization with CESM better
captures historical record

s CESM with

K14 reproduces
North African
dust decline

= Captures
processes
empirically
parameterized
by source
function?

Dust aerosol optical depth
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Overview: Improving parameterization of dust

emission in models

= Low-hanging fruit: implement brittle
fragmentation theory for emitted

size distribution

= Substantial experimental support
= Easy to implement (simple equation)

= To Improve dust cycle response to
changes in weather/climate (including
diurnal, seasonal):

= Kok et al. (2014)

give more realistic response

parameterization can
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=—exp| —| =% 1+—
dinD, Dy A V21n O
L j ) ]
I Y
Finite crack ) .
Scale separation Soil cuml:llatlve
invariance mass fraction = D,
— ] T ]
aQ° i
£ 1 T
i) ] 0 A Caa™l BR Y]
s° RO & N1
o o7
< 01 3 J
7 s d
'-E b
8 ] —— Theory (Kok, 2011)
‘® o] Gil\etteetal.(1972)
o 0.014 O Gillette et al. (1974)  f
E ] 0 Gillett (1974), soll 1 |3
- O Gillette (1974), soil2 |
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E- O Sow (2009; 1
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z Le3 Rosenberg et al. (2014)
0.2 1 10 20

= Performance differs between models

= Other improvements:
= Aeolian roughness maps
= Sub-grid scale variability (wind, surface)
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Scale invariance due to crack merging

Fragments are produced by propagation and merger of cracks in

brittle material

Main crack ‘emits’ side cracks at approximately regular intervals (1)

Cracks are attracted to each other

When
form

Brittle material sample

T T




What is size distribution of PM20 dust in soils?

Emitted dust size distribution depends
on size distribution of
disaggregated dust in arid solils

Not many measurements (8 total)

= Must define typical disaggregated
arid soil size distribution for models

= Those available have similar log-
normal distribution parameters

PM20 dust size distribution seems
relatively soil invariant

Emitted dust size distribution
relatively insensitive to soil type

Supported by
= Insensitivity of dust aerosol size
distributions to source region (Reid et
al., 2003, 2008; Maring et al., 2003)

= Similarity of 6 vertical dust data sets

Soil
number

Soil
texture

location

Geographical | pagt fit D, (um) Best fit g0y

1 Loam Mali 2.6 2.9
2 Silt Senegal 1.6 3.4
3 Sand Mali 1.7 2.8
4 Loamy Algeria 7.2 3.7
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Sources: d’Almeida and Schitz, 1983;
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How does fraction of impacts that produce dust
emission depend on wind speed?

= Calculate fraction of saltator
Impacts that produce
fragmentation and thus dust
emission

= For highly erodible (‘arid’) soils:
= Threshold fragmentation energy ~
mean impact energy

= Fraction of impacts producing
fragmentation ~ constant with ¢!

= For erosion-resistant (‘'semi-
arid’) soills:
= Threshold fragmentation energy >>
mean impact energy:
= Dust emission is due to high-
energy tail

= Fraction of impacts producing
fragmentation increases sharply
with u.!

Probability distribution (szlkg)

o
N

0.01-
1E-3

1E-4

1E-51

L ~maamas

——Highly erodible soil| 3
u*=0.25mls
u*=0.50 m/s
u*=1.00 m/s

Dust
emission

0.1 S

1 10 100 1000
Energy per unit area (kglsz)

Probability distribution (szlkg)

0.1

0.014

Dust

1E-3 - emission
Erosion-resistant
soil
1E'4_j u*=0.25mi/s
u*=0.50 m/s
1E-5 = y---=--‘.|'00-mrls------| e
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Energy per unit area (kglsz)




Implication: Dust cycle more sensitive to climate
change than thought

Increase in threshold () has
2 effects:

-
o
o
o

-
o
o

—_—
RN L1l MR | AR

1. Decrease in wind stress
avallable for dust emission
= Has been widely recognized

2. Larger ., = soil more resistant
to erosion
= Decrease in dust flux for 0.4 Jl——Proposedhere | '
given saltator impact flux ialic, DEC DS st 050
. Recognized by Shao et aI. ,93’ Threshold friction speed, u., (m/s)
‘06
= Not in GCM

parameterizations (e.g., Ginoux
et al., 2001; Zender et al., 2003)

Zender et al. (2003)

Predicted dust flux, F, (ug/m?/s)
S

= Climate change - drier deserts (Solomon et al., 2007)

= Reduces u.,(e.g., Fecan et al., 1999)
= GCMs underestimate resulting dust flux increase



Q1: Does additional physics obsolete
the empirical source functlon’P

= Current parameterizations represent N T = 2 . 1
spatial variability in soil erodibility o ey R e
using source function SRR A L sedEal &
= Shifts emissions to most erodible O e e & T+ T

regions 0.01
= In new parameterization, spatial ..

variability in soil erodibility largely

determined by physically-derived

“dust emission coefficient”

= Scales increase in dust flux per saltator
Impact as soil becomes more erodible

= Yields remarkably similar shift of |
emissions to most erodible regions! B i

» From greater sensitivity of dust Normalized dust emission coefficient C,
flux to soil’s threshold wind speed |20 435 90 45 0 45 90 135 180 <>
for erosion (i)

0.01

= U Mostly controlled by soil i) c eyt u
moisture F,=C, fclaypa*—*t[_*j . C, :exp(—Cei)
Usi U, Usyg
- - W
= New theory replaCeS emplrlcal Due to increasing resistance

result with physical model to erosion with u.,




Q2: does parameterization reproduce dust
emission about as well as existing models’P

AOD N

overpredicted in ME

Source function shifts
emissions (and AOD)
from ME to Western Africa

= Improves agreement

New model produces
similar shift to most
erodible regions

= Due to increased dust

flux sensitivity to soil
threshold (ux)

Dust AOD with old param., no src fnct

s Statistical |y 8|gn|flcant AOD change with new param (no src fct)I

Improvement over other
simulations (from
bootstrap)

= Also statistically
significant improvements
In seasonal and daily
AQD variations
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Q3: Does new parameterization better
reproduce historical dust emission trends?

Empirical parameterizations use
source function to parameterize
part of dust flux sensitivity to soil
state

= Models can capture only part of
dust cycle response to climate-
induced soil state changes

- Underestimation of climate
sensitivity of global dust cycle

- Many models cannot capture decrease
in African dust emission since 80s

Additional physics in new
parameterization does account for
effect of climate-induced soil
state changes
- Better agreement with historical
trend

Also improvements in correlation of
long-term AERONET AQOD trends
= But these records only go back ~15
years
= More long-term records needed
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