

Developing the Next Generation Dynamical Cores

Ben Shipway + GungHo + LFRic + PSyclone + GHASP teams

ICAP/InDust meeting.

8 June 2018

www.metoffice.gov.uk

Developing the Next Generation Dynamical Cores Atmospheric models

Ben Shipway + GungHo + LFRic + PSyclone + GHASP teams

ICAP/InDust meeting.

8 June 2018

www.metoffice.gov.uk

Overview

<u>Scenes</u>

Prologue Act I: Why are we doing this? Scene 1. A new dynamical core? Scene 2. Exascale looms Act II: How are we doing this? Scene 1. GungHo dynamical core Scene 2. LFRic infrastructure Scene 3. Psyclone Act III: A new NWP & Climate model Scene 1. GHASP

The Key Protagonists

GungHo, A project and a new dynamical core LFRic, A new model infrastructure and a new modelling system? **PSyClone**, Code generation software for computational science **GHASP**, The GungHo Atmospheric Science Project Exascale, computing with ExaFlops and a catch-all term for next-generation HPC architectures Finite Element Method (FEM), a numerical discretization akin to Finite Difference or Finite Volume ENDGame, The current dynamical core

Prologue

- 2009: New Chief Scientist from academia worried about how the Unified Model scales
- Initiates a joint Met Office/UK academia project (GungHo) to research the redesign of the dynamical core

Story begins at the ENDGame

- ENDGame operational 2014
- Greatly improved scalability...
- ...but not enough for Exascale

- At 25km resolution, grid spacing near poles = 75m
- At 10km reduces to 12m!

Exascale looms

How are we going to do this?

Mixed FEM

How to maintain accuracy of current model on a GungHo grid? Staniforth & Thuburn (2012)

Principal points about current grid are:

Orthogonal, Quadrilateral, C-grid

•These allow good numerical aspects:

- Lack of spurious modes
- Mimetic properties
- Good dispersion properties

Mixed FEM

Choose function spaces \mathbb{W}_i (i = 0, .., 3) such that the following mapping holds

For basis function P ∈ W₀ then ∇P ∈ W₁ and can choose W₀ to enforce compatibility: e.g ∇ × ∇P ≡ 0.

Function spaces correspond to geometric objects:

- \mathbb{W}_0 Pointwise scalar functions
- \mathbb{W}_1 Circulation vectors (e.g. vorticity)
- \mathbb{W}_2 Flux vectors (e.g. mass flux)
- \mathbb{W}_3 Volume integrated scalars (e.g. density)

	ENDGame	GungHo
Grid	Lat-Long	Cubed-Sphere
Prognostic Variables	ρ, θ, Π, u, ν, w	ρ, θ, Π, <u>u</u>
Prognostics Equations	Advective form	Flux/Advective/Vector Invariant form
Spatial Discretisation	2 nd Order FD	Mixed FEM
Temporal Discretisation	Iterative Semi-Implicit	Iterative Incremental Semi-Implicit
Advection	Semi-Lagrangian	COSMIC (Dimensionally split, Eulerian)

GungHo vs ENDGame

GungHo Transport

- Flux-based Semi-Lagrangian
- Key area where there is a deliberate departure from ENDGame

n-Divergent Wind (combined)

(b) Initial Fields (t=0)

Importance of conservation?

- High resolution LAM simulations
- Strong updrafts at the grid scale
- 'Pointwise' semi-Lagrangian transport cannot 'see' convergence properly
- Significant impact on the precipitation

Age of Air

 One of several tests designed to assess impact of transport formulation and features such as conservation

 $\label{eq:Figure 7: An idealised climate with age of air at different times; flow-field=idelaised climate, arge of air field at t=0, and source=1$

Mohamed Zerroukat

Met Office Hadley Centre

Stephen Pring

Monotonicity

LFRic Infrastructure

In 1922, L.F. Richardson published the book: Weather Prediction by Numerical Process

Separation of Concerns

"PSyKAL" model

Infrastructure e.g. halo_exchange

An example code

 $\underline{y} = \underline{a} \exp(\underline{b})$

Serial code

Distributed memory (MPI)

An example code

 $\underline{y} = \underline{a} \exp(\underline{b})$

Serial code

Shared memory (OpenMP)

•••

An example code

£

 $\underline{y} = \underline{a} \exp(\underline{b})$

LFRic algorithm code

Use my_kernel mod, only: my_kernel

call invoke(my kernel(y, a, b))

Generated PSY layer code

```
Use my kernel mod, only: my kernel
... DIRECTIVES + HALO EXCHANGES ...
... UNPACK DATA AND INDIRECTION MAPS ...
  do cell = 1, ncells
     call invoke my kernel( nlayers,
            y(:,cell), a(:,cell), b(:,cell), &
            map(cell) )
```

LFRic kernel code module my kernel mod ... METADATA subroutine my kernel(nlayers, y, a, b map) ••• do k = 1, nlayers y(|map + k|) = a(|map + k|) * exp(b(|map + k|))end do

PSyClone

Recap: Separation of Concerns

Separate the Natural Science from the Computational Science (performance):

Rupert Ford and Andy Porter, Hartree Centre

Generating the PSy Layer

- A domain-specific compiler for embedded DSL(s)
 - Finite Difference/Volume, Finite Element
 - Currently Fortran -> Fortran
 - Supports distributed- and shared-memory parallelism
 - Should reduce programmer errors (both correctness and optimisation)
- A tool for use by HPC experts
 - Hard to beat a human
 - Optimisations encoded as a 'recipe' rather than baked into the scientific source code
 - Different recipes for different architectures

It works!

Figure 1: Scaling of the parallel efficiency of an N2048 configuration of the Unified Model time-step compared to *Dromedary* release of LFRic (baroclinic wave) for a C1944 configuration time-step.

Chris Maynard

The GungHo Atmospheric Science Project

<u>GHASP</u>

Extra slides

Split direction scheme –1D operators

- 1D advection operators exist in LFRic algorithm layer
- Stencils used to extract data from neighbouring cells

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\phi u)}{\partial x} = 0 \longrightarrow \phi^* = \phi^n - \Delta t \frac{\partial (\phi^n u)}{\partial x}$$
$$= \phi^n - \Delta t \frac{\partial f}{\partial x}$$
$$= X(\phi^n)$$

Flux calculation

flux =
$$\frac{1}{\Delta t} \left[\int_{x_{dep}}^{x_{arr}} \phi dx \right]$$

= $\frac{1}{\Delta t} \left[\int_{-3.8}^{0} \phi dx \right]$
= $\frac{1}{\Delta t} \left[\int_{-3.8}^{-3} \phi dx + \int_{-3}^{-2} \phi dx + \int_{-2}^{-1} \phi dx + \int_{-1}^{0} \phi dx \right]$
= $\frac{1}{\Delta t} \left[\int_{-3.8}^{-3} \phi dx + M_3 + M_2 + M_1 \right]$

- Subgrid approximation (quadratic, linear)
- Fluxes unique on each cell face
- Monotonicity limiters available

www.metoffice.gov.uk Met Office Hadley Centre

COSMIC

 $\frac{\partial \phi}{\partial t} + \frac{\partial (\phi u)}{\partial x} + \frac{\partial (\phi v)}{\partial y} = 0$

$$\phi^{n+1} = \frac{1}{2} \{ Y(X(\phi^n)) + X(Y(\phi^n)) \}$$

Mass conservation

Solid body rotation test

PSyClone Transformation Example

Taken from LFRic subroutine apply_helmholtz_lhs. Multiple invoke's in an algorithm file Multiple kernels in an invoke Mixed builtin's and coded kernels Slightly modified (replaced operator).

<pre>call invoke(</pre>	setval_c(grad_p, 0.0_r_def),	&
	<pre>scaled_matrix_vector_kernel_type(grad_p, p, div_star,</pre>	&
	hb_inv),	&
	enforce_bc_kernel_type(grad_p),	&
	apply_variable_hx_kernel_type(&
	Hp, grad_p, mt_lumped_inv, p,	&
	compound_div, p3theta, ptheta2, m3_exner_star,	&
	tau_t, timestep_term))	

PSyClone Transformation Example

PSyclone's internal representation. A schedule.

Schedule[invoke='invoke_0' dm=True]		
Loop[type='dofs',field_space='any_space_1',it_space='dofs', upper_bound='ndofs']		
Call setval_c(grad_p,0.0_r_def)		
HaloExchange[field='grad_p', type='region', depth=1, check_dirty=False]		
HaloExchange[field='p', type='region', depth=1, check_dirty=True]		
HaloExchange[field='div_star', type='region', depth=1, check_dirty=True]		
HaloExchange[field='hb_inv', type='region', depth=1, check_dirty=True]		
Loop[type='',field_space='any_space_1',it_space='cells', upper_bound='cell_halo(1)']		
KernCall scaled matrix vector code(grad p.p.div star.hb inv) [module inline=False]		
HaloExchange[field='grad_p', type='region', depth=1, check_dirty=False]		
Loop[type='',field_space='any_space_1',it_space='cells', upper_bound='cell_halo(1)']		
KernCall enforce bc code(grad p) [module inline=False]		
HaloExchange[field='mt_lumped_inv', type='region', depth=1, check_dirty=True]		
Loop[type='',field_space='w3',it_space='cells', upper_bound='ncells']		
KernCall apply_variable_hx_code(hp,grad_p,mt_lumped_inv,p,compound_div,p3theta,pthe		
ta2,m3_exner_star,tau_t,timestep_term) [module_inline=False]		