Development of a monthly prediction system for aerosol/ozone

Frédéric Vitart and Angela Benedetti

With contributions from: Alessio Bozzo, Samuel Remy Francesca Di Giuseppe, Rossana Dragani, J. Flemming and Magdalena Balmaseda

ECMWF, Shinfield Park, Reading, UK

INDEX

- 1. Challenges and current status of sub-seasonal prediction
- 2. Adding complexity for sub-seasonal prediction: interactive aerosols versus Climatology
- 3. A striking example: the Indonesian fires of 2015
- 5. Proposal for Aerosol experiments in S2S project Phase 2
- 6. Ozone

Sub-seasonal time range

Sub-seasonal prediction

- Bridges the gap between weather and climate forecasting.
- First attempts of sub-seasonal forecasting started in the 1980s (Miyakoda, Molteni..)

• A particularly difficult time range:

Is it an **atmospheric initial condition problem** as medium-range forecasting or is it a **boundary condition problem** as seasonal forecasting? Is it a "Predictability Desert" ?

Sources of sub-seasonal predictability

- Madden-Julian Oscillation
- Extra-tropical modes (weather regimes: blockings, NAO, PNA, SAM..)
- Sudden Stratospheric Warming
- Quasi-Biennal Oscillation
- ➢ ENSO
- Slowing varying processes: Soil moisture/vegetation, snow, sea ice, ocean SSTs/heat content
- Chemistry: Ozone, aerosols...
- > Others?

Sub-seasonal skill is strongly flow-dependent

ECMWF monthly forecasts

• A 51-member ensemble is integrated for 46 days twice a week (Mondays and Thursdays at 00Z)

• Atmospheric component: IFS with the latest operational cycle and with a Tco639L91 resolution up to day 15 and Tco319L91 after day 15.

• Ocean-atmosphere coupling from day 0 to NEMO (about 1/4 degree) every hour.

The ENS re-forecast suite to estimate the M-climate

The ECMWF monthly forecasts

Aerosols climatology in CY43R3

• Atmospheric forcing depends on *absorption* optical depth:

- Reduced absorption over Arabia in new CAMS climatology weakens the overactive Indian Summer Monsoon, halving the overestimate in monsoon rainfall
- Increased absorption over Africa degraded 850-hPa temperature, traced to excessive biomass burning in CAMS
- We can measure the impact of aerosols on the tropical atmosphere more easily than the absorption optical depth itself! Use to provide information on aerosol errors?

(b) CAMS climatology: geopotential *bias*

(d) CAMS climatology: zonal wind *bias*

Aerosols impacts on the sub-seasonal prediction

Aerosols in the ECMWF IFS

ECMWF Morcrette et al. 2009, *JGR*, **114**, doi:10.1029/2008JD011235 12 aerosol-related prognostic variables:

- 3 bins of sea-salt (0.03 0.5 0.9 20 μm)
- 3 bins of dust $(0.03 0.55 0.9 20 \ \mu m)$
- Black carbon (hydrophilic and -phobic)
- Organic carbon (hydrophilic and –phobic)

• $SO_2 \rightarrow SO_4$

More species to come (i.e. nitrates) and revisited parameterizations (Remy et al, 2017, in preparation)

Physical processes include:

- emission sources (some of which updated in NRT, i.e. fire emissions),
- horizontal and vertical advection by dynamics
- vertical advection by vertical diffusion and convection
- aerosol specific parameterizations for dry deposition, sedimentation, wet deposition by large-scale and convective precipitation, and hygroscopicity (SS, OM, BC, SU)

Monthly EPS coupled runs with interactive aerosols Cycle 41R1

- Control run for the period 2003-2015 uses standard Tegen et al 1997 climatology
- Interactive aerosol run covers the same period and uses fully prognostic aerosols in the radiation scheme only aerosol direct effect
- Free-running aerosols with updated emission for biomass burning
- Ensemble size is 11 members, T255 resolution, 91 levels
- 5 different start dates around May 1 (55 cases in total) summer runs (focus of this talk)
- 3 different start dates around November 1 (33 cases in total)- winter runs

Aerosol impacts on monthly forecasts (summer)

- Results show a positive impact (reduction in bias) of the interactive aerosols on meteorological fields (winds and precipitation) as observed in studies using a more up-to-date aerosol climatology
- More prominent (positive) impact over the Indian Ocean and to a lesser extent in other areas which is also consistent with new climatology results for the same model release

ECIVIVVF

Aerosol impacts on monthly forecasts (summer)

CONTROL RUN – 850 hPa U WIND BIAS WEEK 4

INTERACTIVE AEROSOL RUN – U WIND BIAS WEEK 4

Scorecards measures

- Performance of interactive aerosol experiment with respect to a control run for several parameters.
- Blue circles indicate positive impact
- Dark blue circles indicate significant
 impact

(Scores are applied to bias corrected fields)

- Similar impacts are observed with the new ECMWF/CAMS climatology
- Need to understand the relative importance of the meteorological feedback on the daily variability of aerosols

Experiment Setup (CY43r1)

- Two control runs for the period 2003-2015 were used: one with the Tegen et al 1997 climatology (CONTROL1) and one with the Bozzo et al 2017 climatology (CONTROL2)
- Interactive aerosol simulations cover the same period and use fully prognostic aerosols in the radiation scheme – only aerosol direct effect are included
- Two initializations used for the experiments: one using the CAMS Interim Reanalysis (PROG1) and another using an average aerosol state from a free-running model simulation (PROG2).
- Free-running aerosols with observed emissions for biomass burning
- Ensemble size is 11 members, T255 resolution, 91 levels
- 5 different start dates around May 1 (55 cases in total)
- The experiments were let to run for 6 months

Climatology – DUST - start dates: 20 April 2003-2015

Aerosol Biases (relative to CAMSira) – DUST

b)

160°W

d)

80°N

40°N

80°N 40°N PROG 2

160°E

80°E

Day 19-25

PROG 1

80°E

160°E

a)

80°N

40°N

40°N

40°S 80°S

C) 80°N

Day 26-32

Sub-seasonal variability of aerosols (Observations)

Intra-seasonal variance of AOT= 1/4 of total variance of AOT

Impact of MJO on Dust optical depth anomalies

Modulation Of dust optical depth by the MJO (%) – CAMS Analysis

MJO Phase 67

160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W 0°E 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

MJO Phase 81

Impact of MJO on Biomass Burning optical depth anomalies

Madden Julian Oscillation prediction at ECMWF

CY41R1: revised organized convective detrainment and the revised convective momentum transport. ...

Improvements in MJO Prediction mostly due to changes in convective parameterization

Skill in the monthly prediction of aerosols (RPSS) - Tropics

By-product: monthly dust forecast (May 2015)

DUST AEROSOL OPTICAL DEPTH @ 550nm

CECMWF

CAMS ANALYSIS - 30 May 2015 @ 1200UTC

MONTHLY FORECAST valid for 30 May 2015 @ 1200UTC

Aerosol impacts on monthly forecast biases – Temperature at 850 hPa

a)

Control1 – ERA Interim

PROG1 – Control1

PROG2 – Control1

Aerosol impacts on monthly forecast biases – Precipitation

a)

80°N 60°N 40°N 20°N 0° Control1 – ERA Interim 20°S 40°S 60°S 80°S 160°W 120°W 80°\ 40°W O^c < -8 mm/c1 to 2 b) 80°N 60°N PROG1 – Control1 40°N 20°N 0° 20°S 40°S 60°S 80°S 160°W 20 < -2mm/d 0.2 to 0.4 C) 80°N PROG2 – Control1 60°N

Impact on monthly prediction skill scores

Impact on monthly prediction skill scores

A striking case study: Indonesian fires (Aug-Oct 2015)

Fire radiative power Aug-Oct 2015

Biomass burning AOD anomaly: up to 2000%

Benedetti et al, State of Climate 2016, BAMS. Credits: Antje Inness, Mark Parrington (ECMWF), Gerry Ziemke (NASA)

Prediction of fire emissions is needed (under development)

2m-tm anomaly Oct 2015 - Forecast starting 1st May

CAMS Daly Fire Emissions (GFASv1.2)

CAMS Annual Fire Emissions (GFASv1.2)

Summary and Future Perspectives

- Using prognostic aerosols interactively in the radiation seems to be beneficial to model skill at the sub-seasonal range
- Similar positive results were obtained with an improved aerosol climatology
- Strong modulation of aerosols by MJO, which is generally well simulated by the ECMWF S2S forecasts.
- By-products of using interactive aerosols is the sub-seasonal aerosol prediction per se
- Results show a strong dependence on the initialization (reanalysis are important!!!!)
- Extreme events like the Indonesian fires of 2015 could only be captured with prognostic aerosols (and prognostic fire emissions) these events are connected to El Nino and have a high degree of predictability at the seasonal scale
- More systematic experimentation is needed to understand benefits vs costs. In the current configuration the additional cost in the monthly EPS is 40-50%. HIGH RES runs are possibly prohibitive and perhaps benefits in the medium-range are smaller an aerosol climatology would remain the most viable option.

WWRP/WCRP S2S project

WMO/WWRP International Legacy Projects

Mission Statement

- To improve forecast skill and understanding on the subseasonal to seasonal timescale with special emphasis on highimpact weather events"
- "To promote the initiative's uptake by operational centres and exploitation by the applications community"
- "To capitalize on the expertise of the weather and climate research communities to address issues of importance to the Global Framework for Climate Services"

S2S project

 5-year project, started in Nov 2013 – Possibility of Phase 2 for the period 2019-2023.

• Project office: KMA/NIMR hosts the project office in Jeju island.

• Trust Fund: Contributions from Australia, Canada and

S2S database

	Time- range	Resol.	Ens. Size	Freq.	Hcsts	Hcst length	Hcst Freq	Hcst Size
ECMWF	D 0-46	Tco639/319L91	51	2/week	On the fly	Past 20y	2/weekly	11
υκΜΟ	D 0-60	N216L85	4	daily	On the fly	1993-2015	4/month	7
NCEP	D 0-44	N126L64	4	4/daily	Fix	1999-2010	4/daily	1
EC	D 0-32	0.6x0.6L40	21	weekly	On the fly	1995-2014	weekly	4
CAWCR	D 0-60	T47L17	33	weekly	Fix	1981-2013	6/month	33
JMA	D 0-33	TI479/TI319L100	50	weekly	Fix	1981-2010	3/month	5
КМА	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
СМА	D 0-45	T106L40	4	daily	Fix	1886-2014	daily	4
CNRM	D 0-32	T255L91	51	Weekly	Fix	1993-2014	2/monthly	15
CNR-ISAC	D 0-31	0.75x0.56 L54	40	weekly	Fix	1981-2010	6/month	1
HMCR	D 0-63	1.1x1.4 L28	20	weekly	Fix	1981-2010	weekly	10

S2S Phase 2 (2019-2023) Proposal

Research activities (sub-projects)

- MJO Prediction and teleconnections
- Ocean and sea ice initialization and configuration
- Land Initialization and configuration
- Aerosols
- Ensemble generation

Aerosols Sub-project

Main questions to be addressed:

- 1. What is the impact of prognostic (vs climatologically specified) aerosol loading in the atmosphere on S2S forecasts via its effects on radiation?
- 2. What level of complexity is needed?
- 3. What is the predictability of aerosols (e.g. dust) at the S2S time-scale, and what would be the value of these forecasts

Numerical experiments could be coordinated in association with WGNE. Case studies or large set of re-forecasts? Issue: few centres have the capability of producing subseasonal forecasts with active aerosols.

Impact of interactive ozone vs inactive ozone

Impact on T50 Biases – W4

February start dates

August start dates

160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W 0°E 20°E 40°E 60°E 80°E 100°E 120°E 140°E

Ozone Hole (J. Flemming diagostics)

The simulated ozone hole starts too early and does not last long enough.

Scatter plots of the annual maximum area and minimum depth.

Some skill in predicting the year-to-year variability of the ozone-hole size and depth

CAMS aerosol forecasts

- Built on the ECMWF NWP system with additional prognostic aerosol variables (sea salt, desert dust, organic matter, black carbon, sulphates)
- Aerosol data used as input in the aerosol analysis:

- NASA/MODIS Terra and Aqua Aerosol Optical Depth at 550 nm, now also PMAP AOD at 550nm

- NASA/CALIOP CALIPSO Aerosol Backscatter (experimental)

- AATSR, PMAP, SEVIRI, VIIRS (experimental)

- Verification based on AERONET Aerosol Optical Depth (and now also Angstrom exponent)
- Part of multi-model ensemble efforts such as the International Cooperative for Aerosol Prediction (ICAP) and the WMO Sand and Dust Storm Warning and Assessment System (SDS-WAS) North-African-Middle-East-Europe and Asian nodes.

