

World Meteorological Organization Weather • Climate • Water

Lessons from EuMetChem for Aerosol Prediction and WMO GAW Strategy for Seamless CCMM

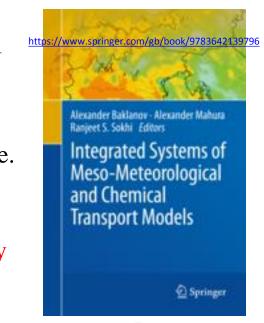
Alexander Baklanov, WMO Atmospheric Environment Research Division E-mail: <u>abaklanov@wmo.int</u>

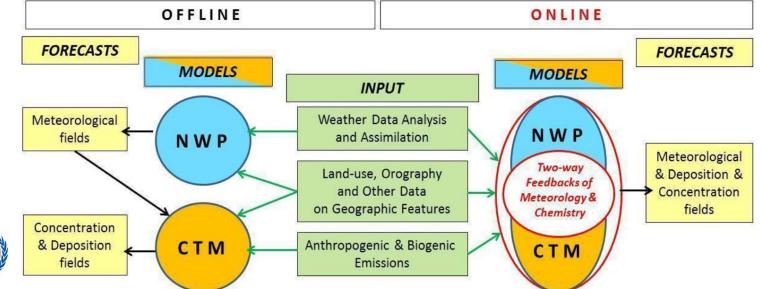
International Cooperative for Aerosol Prediction (ICAP) 10th working group meeting: Seamless model development: Aerosol modelling across timescales WMO OMM 6-8 June 2018, MetOffice, Exeter, UK

World Meteorological Organization Organisation météorologique mondiale

- Coupled Chemistry-Meteorology/Climate Modelling
- Online CCMM for CWF in Europe
- EuMetChem COST Action ES1004
- CCMM Symposium and its Recommendations
- WMO Seamless Approach for Prediction
- Aerosols as a Research Priority of WMO Commission for Atmospheric Science (CAS)
- Global Atmosphere Watch (GAW) Research Program
- WWRP, WCRP & GAW WGNE TT on Aerosols for NWP
- SDS-WAS Program and Dust forecasting
- GAW APP SAG and Chemical Weather Forecasting
- From Research to Services: Global Data-processing & Forecasting System (GDPFS)

Cooperation with ICAP: Suggestions




1st International Workshop on CCMM, Copenhagen, 2007 Motivation: A new concept for Coupled Chemistry-Meteorology Modelling

- Physical and Chemical Weather: dependence of meteorological processes on atmospheric composition (especially aerosols).
- Meteorological data assimilation (in particular assimilation of radiative properties) also depends on chemical composition.
- Air quality forecasts loose accuracy when CTMs are run offline.
- Climate modeling: large uncertainty of SLCFs, water vapor feedbacks, etc.

=> Need for a new generation of seamless integrated meteorology and chemistry modelling systems for predicting atmospheric composition, meteorology and climate evolution !

3

www.eumetchem.info

Action COST ES1004

European framework for online integrated air quality and meteorology modelling (EuMetChem)

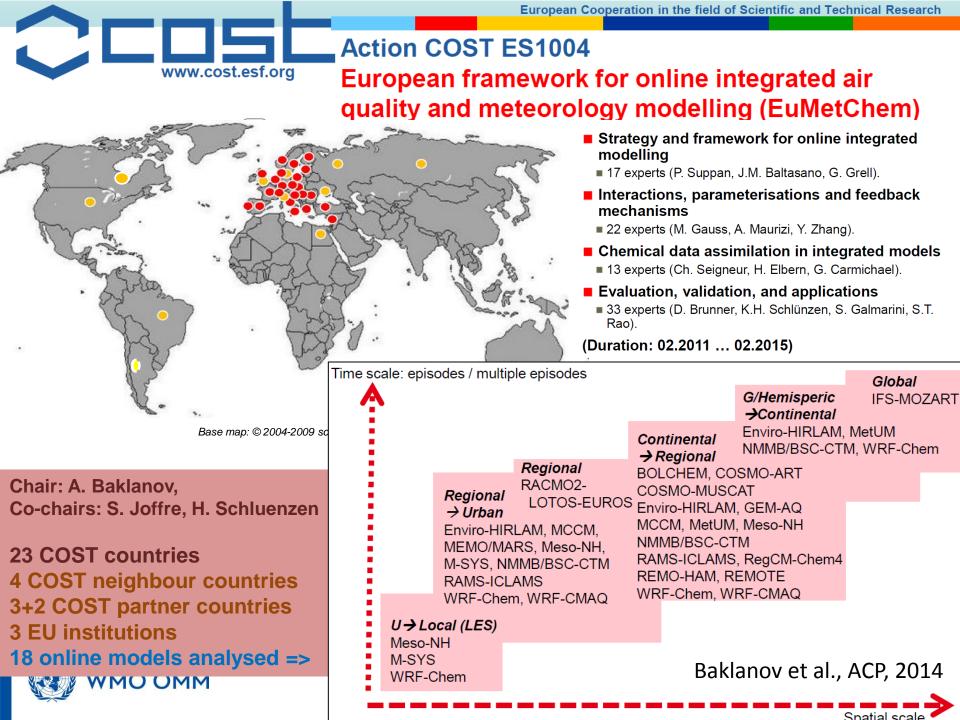
COST countries: AT, BG, CH, DE, DK, EE, ES, FI, FR, GB, GR, HU, IL, IT, MT, NL, NO, PL, PT, RS, SE, SI, TR Chair of the Action: Alexander Baklanov, DMI, Denmark, <u>alb@dmi.dk</u>

Co-Chairs: Sylvain Joffre, FMI, Finland; **Heinke Schluenzen**, Uni Hamburg, Germany **COST Science Officer: Deniz Karaca**, <u>Deniz Karaca@cost.eu</u>

<u>The overall objective</u> is to set up a multidisciplinary forum for online integrated air quality/meteorology modelling and to elaborate an European strategy for an integrated ACT/NWP-CLIM modelling capability/framework.

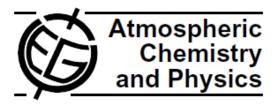
Benefits for the Society

This European action (involving also key American experts) will enable the EU to develop world class capabilities in integrated ACT/NWP-RCM modelling systems, including research, education and forecasting. More than 40 teams from 19 European COST countries, as well as ECMWF, JRC, WMO, US EPA, NOAA, etc. are already involved in the Action. In detail the action will contribute to •a better forecasting of severe weather events and their consequences (forest fires, dust storms, flooding, volcane, or untion, etc.) <u>The Action aims</u> towards a new generation of online integrated Atmospheric Chemical Transport (ACT) and Meteorology modelling systems (NWP and RCM) using two-way interactions between different atmospheric processes including chemistry, clouds, radiation, boundary layer, emissions, meteorology and climate (Fig. 1). The Action intends to consider at least two application areas of integrated modelling: i.improved numerical weather prediction (NWP) and chemical weather forecasting (CWF) with short-term feedbacks of aerosols and chemistry on meteorological variables, ii.two-way interactions between atmospheric pollutions / composition and climate variability / change.


The action covers four working groups:

WG1 Strategy and framework for online integrated modelling (coordinated by Peter Suppan and Jose M. Baldasano),

WG2 Interactions, parameterisations and feedback mechanisms (coordinated by Michael Gauss and Alberto Maurizi),


WG3 Chemical data assimilation in integrated models (coordinated by Christian Seigneur and Hendrik Elbern),

WG4 Evaluation validation and applications (coordinated by Dominic Brunner and

Overview of European progress in AQF and CCMM

Atmos. Chem. Phys., 12, 1–87, 2012 www.atmos-chem-phys.net/12/1/2012/ doi:10.5194/acp-12-1-2012 © Author(s) 2012. CC Attribution 3.0 License.

A review of operational, regional-scale, chemical weather forecasting models in Europe

J. Kukkonen¹, T. Olsson^{1,2}, D. M. Schultz^{1,2,3}, A. Baklanov⁴, T. Klein⁵, A. I. Miranda⁶, A. Monteiro⁶, M. Hirtl⁷, V. Tarvainen¹, M. Boy², V.-H. Peuch^{8,9}, A. Poupkou¹⁰, I. Kioutsioukis¹⁰, S. Finardi¹¹, M. Sofiev¹, R. Sokhi¹², K. E. J. Lehtinen^{13,14}, K. Karatzas¹⁵, R. San José¹⁶, M. Astitha¹⁶, G. Kallos¹⁸, M. Schaap¹⁹, E. Reimer²⁰, H. Jakobs²¹, and K. Eben²²

Atmos. Chem. Phys., 14, 317–398, 2014 www.atmos-chem-phys.net/14/317/2014/ doi:10.5194/acp-14-317-2014 © Author(s) 2014. CC Attribution 3.0 License.

Atmospheric Of Chemistry And Physics

Online coupled regional meteorology chemistry models in Europe: current status and prospects

A. Baklanov¹, K. .Schlünzen², P. Suppan³, J. Baldasano⁴, D. Brunner⁵, S. Aksoyoglu⁶, G. Carmichael⁷, J. Douros⁸, J. Flemming⁹, R. Forkel³, S. Galmarini¹⁰, M. Gauss¹¹, G. Grell¹², M. Hirtl¹³, S. Joffre¹⁴, O. Jorba⁴, E. Kaas¹⁵, M. Kaasik¹⁶, G. Kallos¹⁷, X. Kong¹⁸, U. Korsholm¹, A. Kurganskiy¹⁹, J. Kushta¹⁷, U. Lohmann²⁰, A. Mahura¹, A. Manders-Groot²¹, A. Maurizi²², N. Moussiopoulos⁸, S. T. Rao²³, N. Savage²⁴, C. Seigneur²⁵, R. S. Sokhi¹⁸, E. Solazzo¹⁰, S. Solomos¹⁷, B. Sørensen¹⁵, G. Tsegas⁸, E. Vignati¹⁰, B. Vogel²⁶, and Y. Zhang²⁷

CCMM Application Areas

Air pollution modeling

- from urban to continental scale
- air quality forecasts (few days) or assessment of past/current/future AQ
- sensitivity studies: emission reduction scenarios
- modeling of hazardous plumes
- aerosol studies: natural (dust, sea salt), BB, SOA, SIA, EC/OC

Numerical weather prediction

- potentially improved weather forecast by considering aerosol feedbacks
- natural aerosols: dust, sea salt
- biomass burning impacts
- anthropogenic aerosols, e.g. China, India; what about Europe?

Regional climate modeling

- potentially improved regional climate simulations by considering aerosol feedbacks
- additional interactions with land surface and ocean/sea
- from seasonal climate to multi-year climate simulations

Key scientific questions:

- What are the advantages of integrating meteorological and chemical/aerosol processes in coupled models?
- How important are the two-way feedbacks and chains of feedbacks for meteorology, climate, and air quality simulations?
- What are the effects of climate/meteorology on the abundance and properties (chemical, microphysical, and radiative) of aerosols on urban/regional/global scales?
- What is our current understanding of cloud-aerosol interactions and how well are radiative feedbacks represented in NWP/climate models?
- What is the relative importance of the direct and indirect aerosol effects as well as of gas-aerosol interactions for different applications (e.g., for NWP, air quality, climate)?
- What are the key uncertainties associated with model predictions of feedback effects?
- How to realize chemical data assimilation in integrated models for improving NWP and air quality simulations?
- How the simulated feedbacks can be verified with available observations/datasets? What are the requirements for observations from the three modelling communities?

Effects of Chemistry on Meteorology

Chemical parameter	Effect on	Model variables		
aerosols (direct effect)	radiation (SW scattering/absorption, LW absorp- tion)	AOD, aerosol extinction, single scattering albedo, SW radiation at ground (up- and downward), aerosol mass and number size distributions, aerosol composition: EC (fresh soot, coated), OC, SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , Na, Cl, H ₂ O dust, metals, base cations		
aerosols (direct effect)	visibility, haze	aerosol absorption & scattering coefficients, RH, aerosol water content		
aerosols (indirect effect)	cloud droplet or crystal number and hence cloud optical depth	interstitial/activated fraction, CCN number, I number, cloud droplet size/number, cloud liqui and ice water content		
aerosols (indirect effect)	cloud lifetime	cloud cover		
aerosols (indirect effect)	precipitation (initiation, intensity)	precipitation (grid scale and convective)		
aerosols (semi-direct effect)	ABL meteorology	AOD, ABL height, surface fluxes (sensible and la- tent heat, radiation)		
O ₃	UV radiation	O ₃ , SW radiation < 320 nm		
O ₃	thermal IR radiation, temperature	O ₃ , LW radiation		
NO ₂ , CO, VOCs	precursors of O_3 , hence indirect contributions to O_3 radiative effects	NO ₂ , CO, total OH reactivity of VOCs		
SO ₂ , HNO ₃ , NH ₃ , VOCS	precursors of secondary inorganic and organic aerosols, hence indirect contributors to aerosol direct and indirect effects	SO ₂ , HNO ₃ , NH ₃ , VOC components (e.g. ter- penes, aromatics, isoprene)		
soot deposition on ice	surface albedo change	snow albedo		

Coupled chemistry-meteorology models

Advantages as compared to offline models

- meteorological fields accessible at every time step
- single executable, single simulation, single parallelization strategy
- consistent treatment of processes acting on chemical and meteorological variables, computed only once in one code
- possibility to consider interactions between chemistry and meteorology
- data assimilation affects at same time chemical and meteorological variables
- no meteo preprocessing, no need for reading meteo from disk

Challenges

- chemistry to be solved at same (high) resolution as meteorology
- meteorology changes when feedbacks are activated
- significant investment to ensure consistent treatment of processes (e.g. radiation, transport)
- development of chemistry and meteorology parts not separated; therefore strong co-ordination needed

MMO OMM

After Grell and Baklanov, AE, 2011

Key scientific questions:

- What are the advantages of integrating meteorological and chemical/aerosol processes in coupled models?
- How important are the two-way feedbacks and chains of feedbacks for meteorology, climate, and air quality simulations?
- What are the effects of climate/meteorology on the abundance and properties (chemical, microphysical, and radiative) of aerosols on urban/regional/global scales?
- What is our current understanding of cloud-aerosol interactions and how well are radiative feedbacks represented in NWP/climate models?
- What is the relative importance of the direct and indirect aerosol effects as well as of gas-aerosol interactions for different applications (e.g., for NWP, air quality, climate)?
- What are the key uncertainties associated with model predictions of feedback effects?
- How to realize chemical data assimilation in integrated models for improving NWP and air quality simulations?
- How the simulated feedbacks can be verified with available observations/datasets? What are the requirements for observations from the three modelling communities?

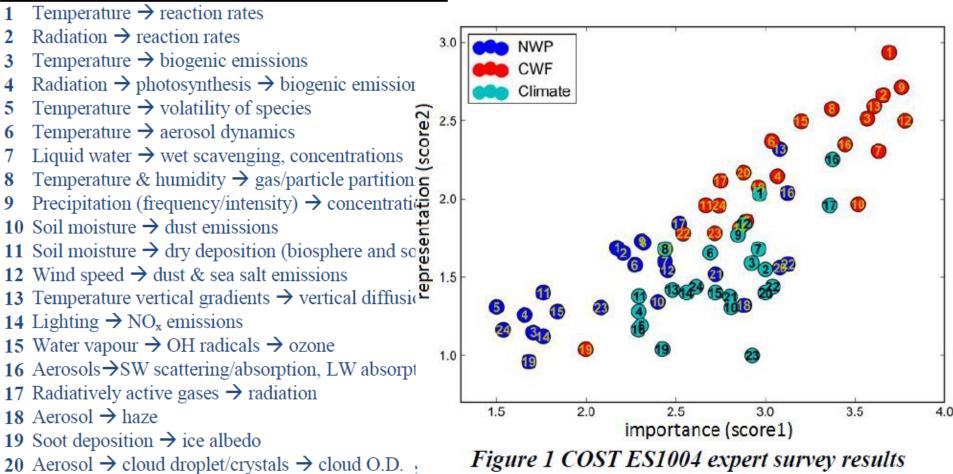

Importance and Representation of Aerosol-chemistry-meteorology interactions for NWP, CWF and Climate models

Table 1 List of meteorology-chemistry interactions

21 Aerosol → cloud morphology (e.g., reflectance)
22 Aerosol → precipitation (initiation, intensity)

24 Changes in land surface \rightarrow BVOC emissions

23 Climate change \rightarrow forest fire emissions

Baklanov et al., ACP, 2014 Kong et al., AQC, 2014

Survey Results – Top Six Ranked Important Interactions

Top six ranked Meteorology and chemistry interactions Changes in affect (->)	Score1	Score2	
(A) Numerical Weather Prediction (NWP)			
aerosol -> precipitation (initiation and intensity of precipitation)	3.1	1.3	
aerosols -> radiation (shortwave scattering/absorption and longwave absorption)	3.1	1.9	
temperature vertical gradients -> vertical diffusion	3.1	2.2	
aerosol -> cloud droplet or crystal number density and hence cloud optical depth	3.1	1.3	
aerosol -> haze (relationship between the hygroscopic growth of aerosols and humidity)	2.9	1.0	
aerosol -> cloud morphology (e.g., reflectance)	2.7	1.2	
(B) Chemical Weather Forecast (CWF)			
wind speed -> dust and sea salt emissions	3.8	2.5	
precipitation (frequency/intensity) -> atmospheric composition	3.8	2.7	
temperature -> chemical reaction rates and photolysis	3.7	2.9	
radiation -> chemical reaction rates and photolysis	3.7	2.7	
liquid water -> wet scavenging and atmospheric composition	3.6	2.3	
temperature vertical gradients -> vertical diffusion	3.6	2.6	
(C) Climate modelling			
aerosols -> radiation (shortwave scattering/absorption and longwave absorption)	3.4	2.3	
radiatively active gases (e.g., water vapour, CO ₂ , O ₃ , CH ₄ , NO and CFC) -> radiation	3.4	2.0	
aerosol -> precipitation (initiation and intensity of precipitation)	3.0	1.4	
radiation -> chemical reaction rates and photolysis	3.0	1.5	
aerosol -> cloud droplet or crystal number density and hence cloud optical depth	3.0	1.4	
temperature -> chemical reaction rates and photolysis	3.0	2.0	

Primary attention needs to be given to the interactions with high 'score1' (importance of the interaction for models) together with low 'score2' (adequacy of the representation of the interaction in models)

EuMetChem in AQMEII online models evaluation exercise

			EII-2 pro		viki		aqmeli_p2 My account	
Home	Model Setup	Models	User Software	Forum	Analysis	Admin	Help	
3 2 3 2	Air quali	aerost	e climate system) L	Europ Qualit	y and Meteorolo	for Online Integrated Air gy Modelling	

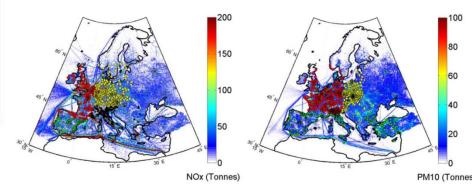
Welcome

This site provides a platform for exchange of information, code and data sets for all partners participating in the Air Quality Model Evaluation International Initiative (AQMEII) phase 2.

The site provides links to relevant documents and data sets and information on required model setup. For each model there is also a specific space providing a short description of the model and further customized information if useful.

	Group		Met					
	•	Domain	Model	СТМ	on	Ringenic Model	Gas Phase	reation
	NL2	EU	RACMO	LOTOS- EUROS	0.5?×0. 25?	Guenther et al., 1991	CB-IV	Segers A., 2013
	BG1	EU	WRF	CMAQ	25 km	BEIS	CB-IV	Byun and Schere, 2006
	SI1	EU	WRF	CHEM	23 km	MEGAN	RADM2	Grell et al., 2005
	IT2	EU	WRF	CHEM	23 km	MEGAN	RACM	Grell et al., 2005
	DE4 🖷	EU	WRF	CHEM	27 km	MEGAN	RADM2	Grell et al., 2005
	IT1	4 r	M IO	dels	2 10		oma	dre et al., 2005
M7	CH1	EU	соѕмо	COSMO- ART	0.22°		RADM2K	Vogel et al., 2009
(Du	t O	MY	CMAQ UCKA RAO		/ie/ual	BATO C	Vorge Gl., 2012 Savage et a., 2013
M10	ES1	EU	WRF	CHEM	23 km	MEGAN	RADM2	Grell et al., 2005
	ES2a	EU	NMM	BSC-CTM	0.20°	MEGAN	CB-V	Jorba et al., 2012
	DE3	EU	COSMO	MUSCAT	0.25°	Gunther et al., 1993	RACM-MIM2	Renner and Wolke, 2010
	AT1	EU	WRF	CHEM	23 km	MEGAN	RADM2	Grell et al., 2005
	ES3	EU	WRF	CHEM	23 km	MEGAN	CBMZ	Grell et al., 2005
M15	ES1	NA	WRF	CHEM	36 km	MEGAN	RADM2	Greil et al., 2005
	US6	NA	WRF	CMAQ	12 km	BEIS3.14	CB-V-TU	Wong et al., 2012
	CA2	NA	GEM	MACH	15 km	BEIS	ADOM-II	???
	US7	NA	WRF	CHEM	36 km	MEGAN	MOZART	Grell et al., 2005
	US8	NA	WRF	CHEM	36 km	MEGAN	CB05	Grell et al., 2005
	ES3	NA	WRF	CHEM	36 km	MEGAN	CBMZ	Grell et al., 2005

EuMetChem WG4 leader Dominik Brunner


European domain

Year 2010

Selected case studies for aerosol feedbacks:

- 1. Russian forest fires, summer 2010
- 2. Sahara dust episode over Europe
- 3. MEGAPOLI Paris measurement campaign

Collective analysis by JRC

 $\rm NO_x$ and PM10 measurement stations overlaid over corresponding emission maps. Symbols colored according to evaluation subdomain.

CCMM Evaluation – AQMEII-2 results

Atmospheric Environment Special Issue, Eds Galmarini et al, Aug 2015

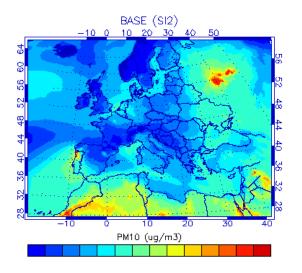
Operational evaluation

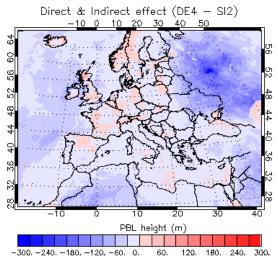
Im et al. 2015a,b Brunner et al. 2015 Giordano et al. 2015 Badia et al. 2014 Yahya et al. 2015

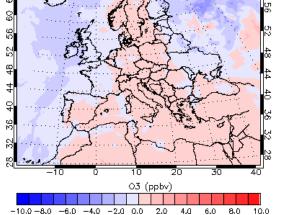
Diagnostic evaluation

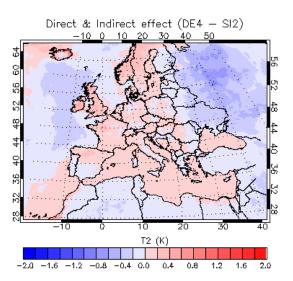
Knote et al. 2015 Curci et al. 2015 Balzarini et al. 2015 Baro et al. 2015 Forkel et al. 2015 Makar et al. 2015a,b Kong et al. 2015

Dynamic evaluation

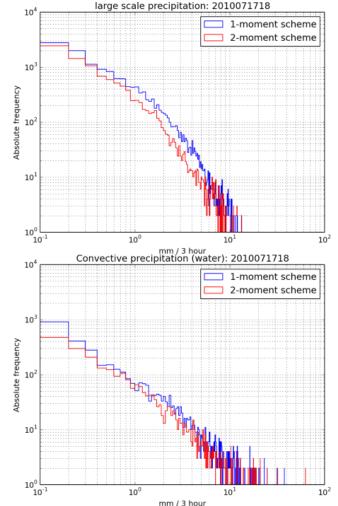

Hogrefe et al. 2015 Wang et al. 2015 Compbell et al. 2015 WMO OMM PM and ozone, AQ monitoring sites, O₃ profiles, AERONET meteorology: surface T, wind, radiation, precipitation, profiles MACC reanalysis and its influence as BC for regional models evaluation of NMMB-BSC evaluation of WRF-Chem


gas-phase chemistry schemes uncertainties in aerosol optical properties chemical mechanisms in WRF-Chem microphysics schemes in WRF-Chem on indirect effects radiative feedbacks in WRF-Chem feedback effects on weather and on chemistry meteo-chemistry interactions during air pollution episodes


evaluation of WRF-CMAQ and response to emission changes column variables evaluated vs. satellites for 2006 and 2010 O_3 & PM2.5 response to emission changes 2006-2010



WRF-Chem Sensitivity Runs on 2010 Russian Fire Case Study: Chains of aerosol direct & indirect effects on meteorology


- Significant aerosol direct effects on meteorology (and loop back on chemistry).
- Reduced downward short wave
 radiation and surface temperature,
 and also reduced PBL height. It in
 turn reduced photolysis rate for O3
- The normalized mean biases are significantly reduced by 10-20% for PM10 when including aerosol direct effects.
- Indirect effects are less pronounced for this case and more uncertain.

Kong et al, AE, 2015

Enviro-HIRLAM: aerosol-cloud interactions

6670: Diurnal cycle of PREC (Jul 2010) FOR: Ref-HIRLAM OBS: 6670 Precipitation [mm / 12 hr] 15.0 10.0 5.0 2.5 03 8 ġ F. 21 26 6670: Diurnal cycle of PREC (Jul 2010) FOR: Enviro-HIRLAM OBS: 6670 Precipitation [mm / 12 hr] 15.0 10.05.0 2.5 2010-07-03 2010-07-12 2010-07-1 2010-07-26 2010-07 2010-07 Date

Frequency distribution in [mm/ 3 hour] of stratiform precipitation (top) and convective precipitation (down). Comparison of 1-moment (Reference HIRLAM) and 2moment (Enviro-HIRLAM with aerosol–cloud interactions) cloud microphysics STRACO schemes.

Precipitation amount (12 hrs accumulated) of reference HIRLAM (top) and Enviro-HIRLAM with aerosol–cloud interactions (down) vs. surface synoptic observations at WMO station 6670 at Zurich, Switzerland during July 2010.

Nuterman et al, 2014; Baklanov et al., 2017

Conclusions & recommendations

EuMetChem & AQMEII-2 specific:

- Inter-model differences in simulated chemical and meteo variables often larger than aerosol direct and indirect effects.
- Regional CCMMs are still young, deficiencies have been identified for several models, further improvements needed
- Large differences found for aerosol mass and composition. Additionally evaluate

 (a) sulphate aerosols and contribution of different SO₂ oxidation pathways
 (b) parameterizations of naturally emitted aerosols (dust, sea salt)
 (c) secondary organic aerosol formation
- Chemical fields from global model used as BC have significant impact on regional models. Better harmonization between regional and global models desirable, including

 (a) better harmonization of the emission inventories
 (b) a better harmonization of chemistry & aerosol schemes
- SW & LW radiation measurements at surface are important for analysing aerosol direct and indirect effects but hardly available
- Satellite observations have high potential for evaluating regional CCMMs, especially with respect to direct and indirect effects

WMO OMM

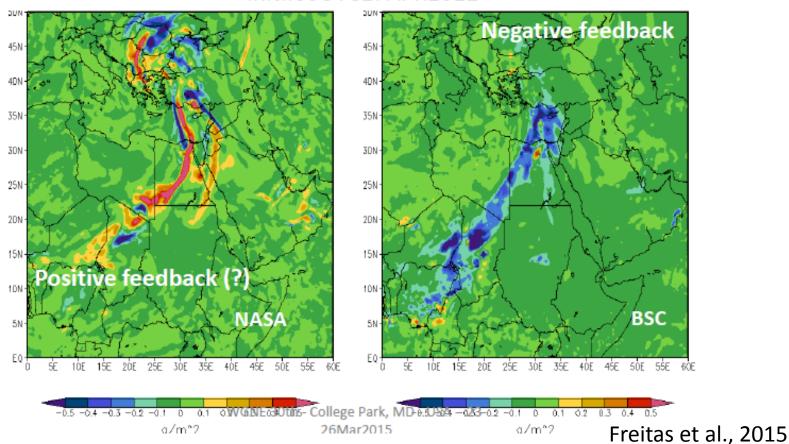
WGNE Exercise Evaluating Aerosols Impacts on Numerical Weather Prediction

Case Studies

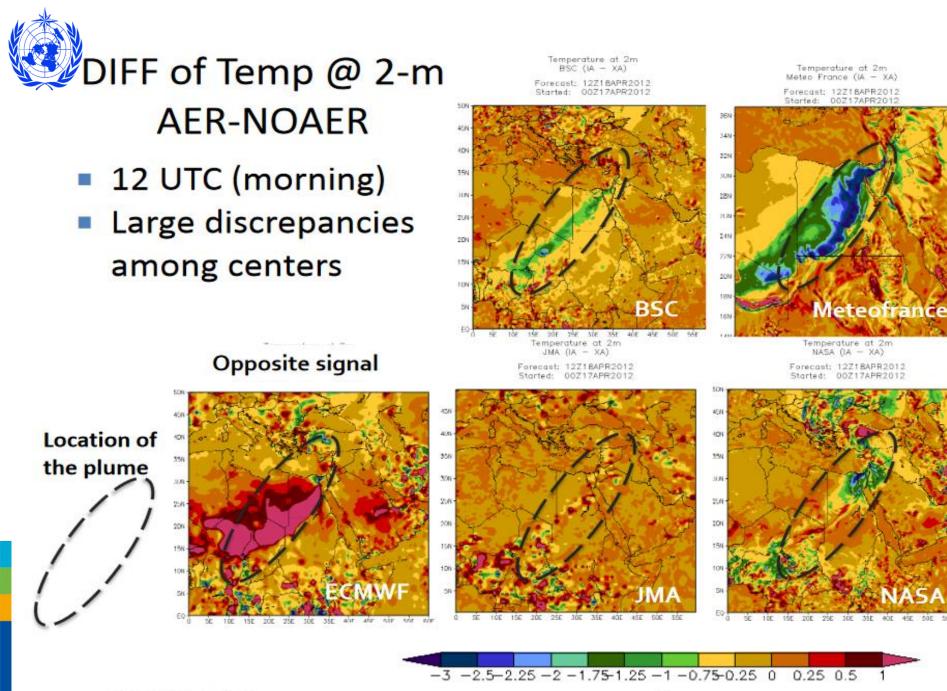
1) Dust over Egypt: 4/2012

2) Pollution in China: 1/2013

3) Smoke in Brazil: 9/2012


WMO WGNE Aerosol Task Leader Saulo Freitas, INPE/NASA

Freitas et al., 2015



How much interactive aerosol dust changes dust concentration itself?

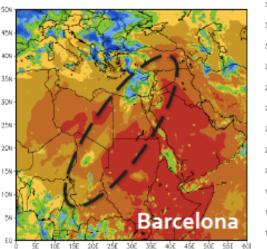
Mass of dust column integrated (AER-NOAER) forecast 09UTC18APR2012 Init.:00UTC17APR2012

CCMM 23-25Feb2015

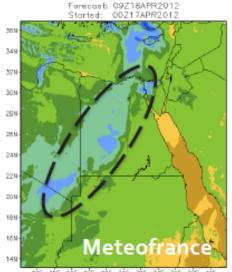
Freitas et al., 2015

K

25E 308 35E 106



Intercomparison


- 9 UTC (morning)
- Large discrepancies among centers

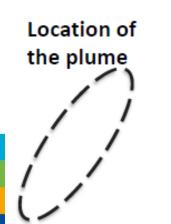
Shortwave Downwelling Radiative Flux at the Surface BSC (with interactive aerosols)

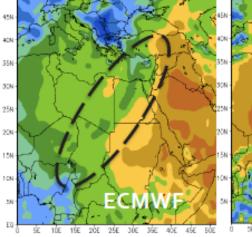
> Forecost: 09Z18APR2012 Started: 00Z17APR2012

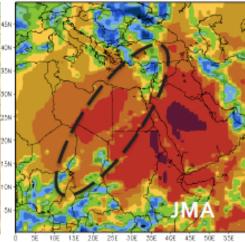
Shortwave Downwelling Radiative Flux at the Surface Meteo France (with interactive serosols)

20E 22E 24E 26E 26E 30E 32E 34E 34E 34E 44E

Shortwave Downwelling Radiative Flux at the ECMWF (direct effect only)

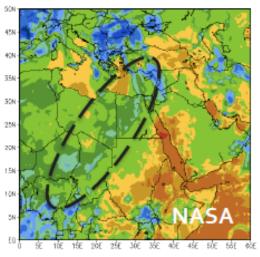

> Forecast: 09Z1BAPR2012 Started: 00Z17APR2012


Shortwave Downwelling Radiative Flux at the Surface JMA (with interactive aerosols)


> Forecast: 09Z18APR2012 Started: 00Z17APR2012

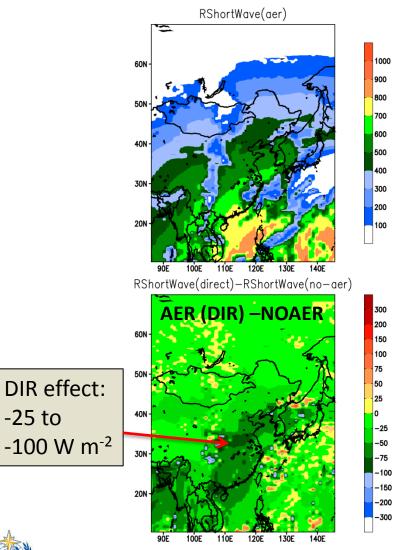
Shortwave Downwelling Radiative Flux at the Surface NASA (with interactive cerosols)

Forecast: 09Z18APR2012 Started: 00Z17APR2012

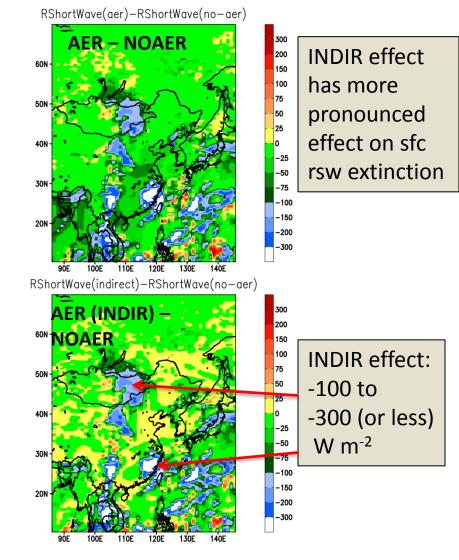


10

50

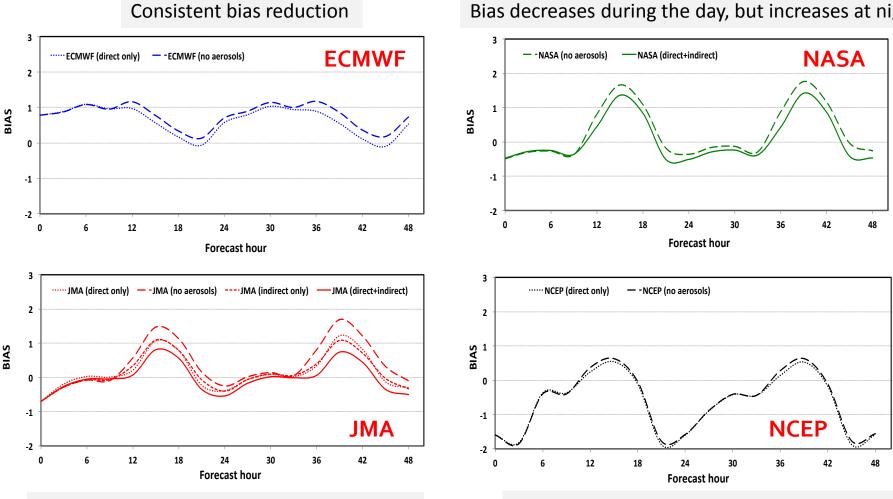


Freitas et al., 2015


WGNE 30th - College Park, MD - USA - 23-26Mar2015 W/m^2

100 200 300 400 500 700 800 900 100011001200

Case 2: Beijing episode JMA – Rad shortwave at sfc (W m⁻²) Init 00UTC12JAN FCT: 03UTC14JAN


VMO OMM

Freitas et al., 2015

Case 3: Brasil, the SAMBBA experiment **BIAS: 2-m Temperature**

Consistent bias reduction with increasing aerosol treatment complexity during the day, with a slight increase during the night.

Bias decreases during the day, but increases at night

Slight decrease of bias during 12-18 UTC

Freitas et al., 2015

d Meteorological Organization

Topics

Symposium on Coupled Chemistry Meteorology/Climate Modelling

Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research

WMO Headquarters, Geneva, Switzerland 23-25 February 2015

100 participants from all continents 46 oral talks, 36 posters, All presentations are available on: <u>http://eumetchem.info/</u>

7 topics brain-storm teams to conclude WMO Report to be published ACP & GMD Journal CCMM Special Issue Outcomes provided for 17th WMO Congress

- Coupled chemistry-meteorology (weather and climate) modelling (CCMM): approaches and requirements;
- Key processes of chemistry-meteorology interactions and their descriptions;
- Aerosol effects on meteorological processes and NWP;
- CCMM for air quality and atmospheric composition;
- CCMM for regional and global climate modelling;
- Model validation and evaluation;
- Data requirements, use of observations and data assimilation;
- Outlook and future challenges.

CCMM Applications Areas

Air pollution modeling

from urban to continental scale
air quality forecasts (few days) or assessment of past/current/future AQ
sensitivity studies: emission reduction scenarios
modeling of hazardous plumes
aerosol studies: natural (dust, sea salt), BB, SOA, SIA, EC/OC

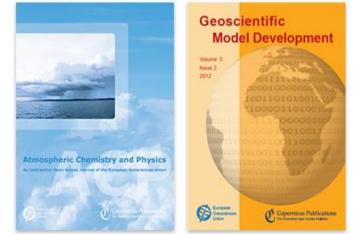
Numerical weather prediction

 potentially improved weather forecast by considering aerosol feedbacks

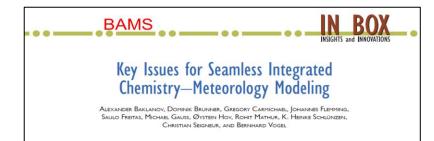
natural aerosols: dust, sea salt

- biomass burning impacts
- anthropogenic aerosols, e.g. China, India; what about Europe?

Regional climate modeling


•potentially improved regional climate simulations by considering aerosol feedbacks

additional interactions with land surface and ocean/seafrom seasonal climate to multi-year climate simulations



CCMM Special issue 370: 42 papers

http://www.atmos-chem-phys.net/special issue370.html

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-42 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 27 February 2018 © Author(s) 2018. CC BY 4.0 License.

Aerosol SAG overview paper:

Status and future of Numerical Atmospheric Aerosol Prediction with a focus on data requirements

Angela Benedetti¹, Jeffrey S. Reid², Alexander Baklanov³, Sara Basart⁴, Olivier Boucher⁵, Ian M. Brooks⁶, Malcolm Brooks⁷, Peter R. Colarco⁸, Emilio Cuevas⁹, Arlindo da Silva⁸, Francesca Di Giuseppe¹, Jeronimo Escribano⁵, Johannes Flemming¹, Nicolas Huneeus^{10,11}, Oriol Jorba⁴, Stelios Kazadzis^{12,13}, Stefan Kinne¹⁴, Peter Knippertz¹⁵, Paolo Lajl⁶, John H. Marsham^{6,17}, Laurent Menut¹⁸, Lucia Mona¹⁹, Thomas Popp³⁰, Patricia K. Quinn²⁴, Samuel Rémy⁵, Thomas T. Sekiyama²¹, Taichu Tanaka²¹, Enric Terradellas²², and Alfred Wiedensohler²³

¹European Centre for Medium-Range Weather Forecasts, Reading, UK ²Naval Research Laboratory, Monterey, CA, USA ³World Meteorological Organisation, Switzerland ⁴Barcelona Supercomputing Center, BSC, Barcelona, Spain

Main Outcomes

GAW Report No. 226 WWRP 2016-1 WCRP Report No. 9/2016

Coupled Chemistry-Meteorology/ Climate Modelling (CCMM): status and relevance for numerical weather prediction, atmospheric pollution and climate research

(Geneva, Switzerland, 23-25 February 2015)

WMO-No. 1172

WEATHER CLIMATE WATER

http://www.wmo.int/pages/prog/arep/gaw/ documents/Final_GAW_226_10_May.pdf

 \odot \odot

Online coupling for (i) NWP and MetM, (ii) AQ and CWF, (iii) Climate and Earth System modelling

- Relative importance of online integration and level of details necessary for representing different processes and feedbacks can greatly vary for these related communities.
- NWP might not depend on detailed chemical processes but considering the cloud and radiative effects of aerosols can be important for fog, visibility and precipitation forecasting, surface T, etc.
- For climate modelling, feedbacks from GHGs and aerosols become extremely important. However in some cases (e.g., for long-lived GHGs on global scale), fully online integration of full-scale chemistry is not critically needed. Still too expensive, so models need to be optimized and simplified.
- For chemical weather forecasting and prediction of atmospheric composition, the online integration definitely improves AQ and chemical atmospheric composition projections.
- Main gaps:
 - Understanding of several processes: aerosol-cloud interactions are poorly represented;
 - data assimilation in online models is still to be developed;
 - model evaluation for online models needs more (process) data and longterm measurements – and a test-bed.

What are the advantages of integrating meteorological and chemical/aerosol processes in coupled models for NWP?

- Advantages for episodes in relation to
 - health effects
 - aviation forecasts (icing, volcanic ash)
 - Radiation & surface temperature
 - Plume rise
- Cloud properties probably.
- Precipitation not yet clear.
- Benefits under 'normal' conditions not clear.
- Improving satellite retrieval of CO2 concentrations (and others?)

How important are the two-way feedbacks and chains of feedbacks for NWP?

- strong evidence for the importance of some of the model chains:
 - increased AOD -> lower surface T -> shallower PBL-> increasing primary pollutant concentrations
 - increased AOD -> lower surface T higher T above -> stronger stability > convection inhibition
- Importance varies strongly with location (indirect effect more important in tropics?) and time (episodes) and with the model applied.
- For weather prediction the 3D real-time aerosol would most probably be important in specific cases of high aerosol concentrations.

CCMM for air quality and atmospheric composition Main Challenges and Gaps

- Urban/stable boundary layer: interactions between atmospheric chemistry and dynamics
- *Finer scale model applications* require frequent coupling between the dynamical and chemical
- Changes in stratosphere-troposphere exchange and impacts on "background" O₃.
- Integrating emerging satellite observations with CCMMs
- *Pollution scavenging and deposition* inclusion of aerosolcloud interaction
- Need to evolve the way we compare grid based models with point observations

Recommendations for future research (CCMM, 2017): For climate research:

- Improve our understanding of indirect effects (e.g. BC on clouds).
- Develop CCMs with prognostic aerosol to asses what is the tradeoff between a more complex aerosol representation on the one side and model resolution, or the atmosphere-ocean coupling, on the other side?
- Test model performance in terms of relevant physical, chemical, and radiative processes and mechanisms (in contrast to just testing mean performance).
- Test model performance in terms of tropospheric dynamics/meteorology and their effect on composition (and vice-versa).

Future Needs

- Continue intercomparisons both at global and regional scale for AQ, NWP and climate; should consider also intercomparison that are cutting across all 3 fields.
- Need some specifically defined experiment that looks at chemistrycloud-microphysics at different scales.
- Need for (field experimental) data to evaluate online coupled models.
- Improving the numerical and computational efficiency of the models as the complexity of applications grows (e.g., scales).

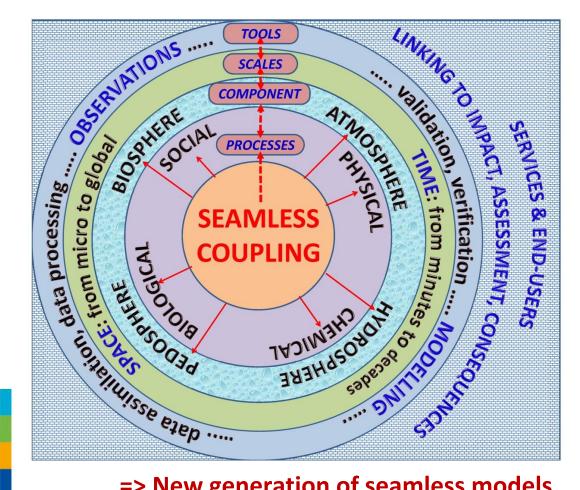
Seamless Prediction

We are entering a new ers in technological innovation and in use and integration of different sources of information for improving well-being and the ability to cope with multi-hazards. New predictive tools able to detail westher conditions to neighbourhood level, to provide early warnings a month shead, and to forecast weather-related impacts such as flooding and energy consumption will be the main outcomes of the next eny ears research activities in weather science. A better understanding of small-scale processes and their inherent predictability should go together with a better comprehension of how weather-related information. Within this perspective, this book is intended to be a valuable resource for anyone dealing with environmental prediction matters, providing new perspectives for planning and guiding future research programmes. CTION OF THE EARTH SYSTEM: IINUTES TO MONTHS SEAMLESS PREDICTION OF THE EARTH SYSTEM: FROM MINUTES TO MONTHS

CHAPTER 12. SEAMLESS METEOROLOGY-COMPOSITION MODELS: CHALLENGES, GAPS, NEEDS AND FUTURE DIRECTIONS

Alexander Baklanov, Véronique Bouchet, Bernhard Vogel, Virginie Marécal, Angela Benedetti

and K. Heinke Schlünzen



WMO WWOSC 'Seamless Earth System Modelling' Book:

http://library.wmo.int/pmb_ged/wmo_1156_en.pdf

The seamless approach considers several dimensions of the coupling:

=> New generation of seamless models integrated with observations i) **Time scales** (from minutes and nowcasting till decades and climate time-scale);

ii) Spatial scales (from street till global scales with downscaling and upscaling methods);

iii) **Processes**: physical, chemical, biological, and social;

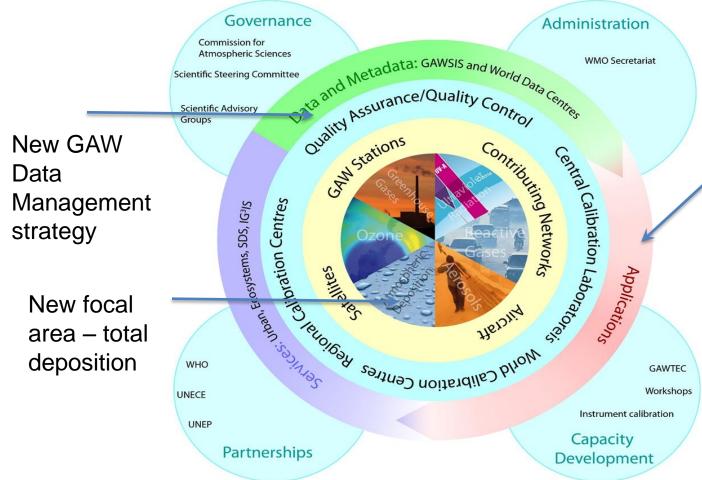
iv) Earth system components: atmosphere, hydrosphere, pedosphere, ecosystems/ biosphere;

v) Different types of **observations** and modelling tools: data processing and **data assimilation**, validation and verification of modelling results; and

vi) User-oriented integrated systems and impact based forecasts and services.

WMO Commission for Atmospheric Science (CAS)

AEROSOLS - One of six CAS PRIORITIES


Aerosols: Impacts on air quality, weather and climate

 The monitoring and modelling of aerosols is a significant challenge – many stations needed to measure a wide variety of variables.

CAS stressed the need to plan for an **integrated** global aerosols observation system.

Global Atmosphere Watch (GAW) Programme New IP for 2016-2023 on concept "science for services"

New Scientific Advisory Group on Applications, lead by V.-H. Peuch, CAMS & F. Dentener, JRC

GAW has >800 stations in >100 countries and works with >100 variables!

Overarching goal of GAW research is a better understanding of atmospheric processes with underpins science based products and services WMO OMM

GAW – enhancing modeling

The broad "atmospheric chemistry" application area was substituted with more specific application areas:

- "atmospheric composition forecasting",
- "atmospheric composition analysis and monitoring"
- "urban services".

Expand GAW's role in enhancing predictive capabilities (atmospheric composition and its uses)

☑ urban air quality forecasting capabilities through GURME,

 ✓ new Modelling Applications SAG ("Apps") – usefulness exchanging chemical observational data in NRT

☑ expanding collaborations with WWRP/WCRP/WGNE and others

GAW SAG-APPs Work Streams

(1) Assessment activities

• Health, climate change, ecosystems

(2) Improving emissions

- Up-to-Date, weather- (or proxy) dependent
- Inverse modelling

(3) Developments of NRT systems

- Ensembles, help set-up applications worldwi
- MAP-AQ as a key project

(4) Data aspects

Identify gaps (limb sounding...), common ski
 System

(5) Developing scientific activities

- interactive chemistry/radiation for improving NWP forecasts (up to seasonal),

identify gaps in knowledge

(6) Outreach

Summer schools, webinars, "Year of Air Quality" initiative?

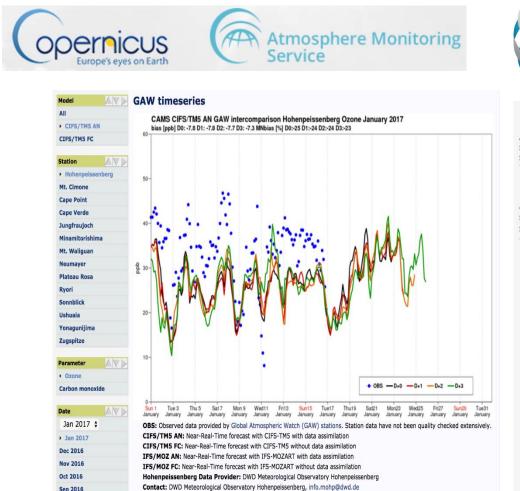
co-chairs: F. Dentener (JRC) & V.-H. Peuch (ECMWF)

Applications in GAW to supports Members

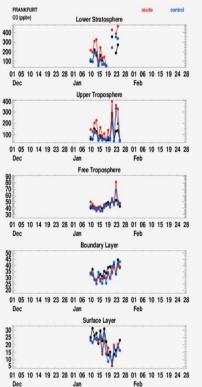
Observations and reanalysis: direct support of conventions (LRTAP, Montreal Protocol)

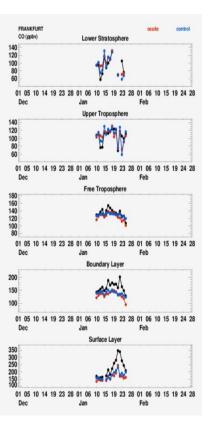
Specific service oriented applications:

- Support of climate negotiations: IG³IS
- *Ecosystem services*: Analysis of total deposition, nitrogen cycle, deposition to the oceans/marine geoengineering
- *Health:* Regional (MAP-AQ) and Urban air quality (GURME)
- Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS)
- Vegetation Fire and Smoke Pollution Warning and Advisory System (VFSP-WAS)
- Food security: Atmospheric composition and agriculture
- Transport security: Volcanic ash forecasting
- Weather forecasting: aerosol effects on NWP, high impact weather **MO OMM**

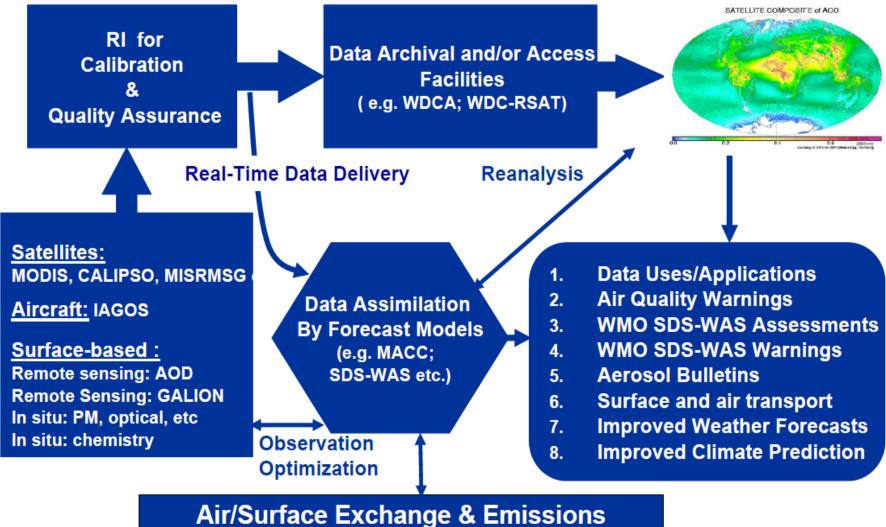


GAW DATA USED FOR CAMS VERIFICATION (GLOBAL, NRT)

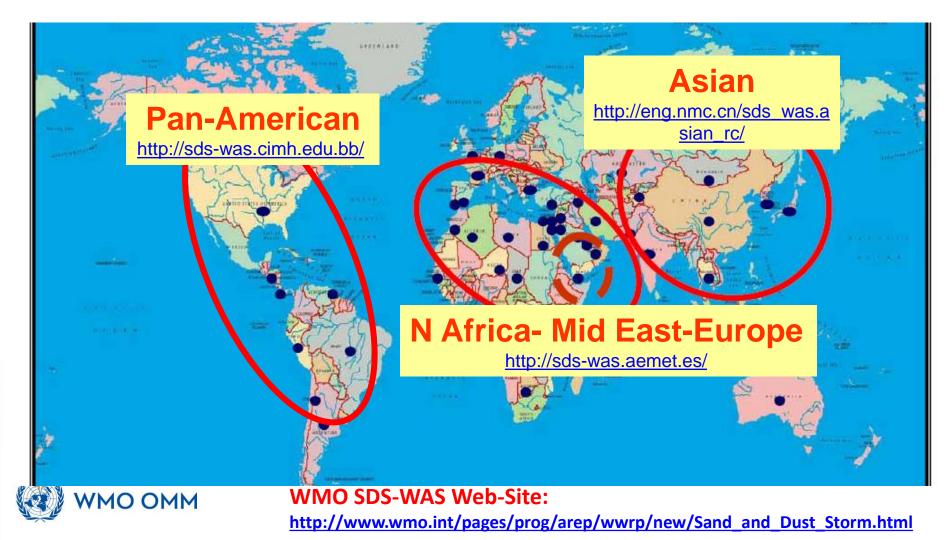

http://atmosphere.copernicus.eu/user-support/validation/verification-global-services



MO OMM



WMO Global Atmosphere Watch (GAW) Integrated Global Aerosol Observing System



GAW Report No. 207

Sand & Dust Storm Warning Advisory & Assessment System (SDS-WAS)

- 3 Regional Nodes, 15 organizations providing forecast
- WMO WWRP/GAW Global Coordination: Steering Committee and Trust Fund
- Regional coordination through regional activity nodes
- SDS-WAS Science & Implementation Plan approved:

Numerical models contributing to WMO SDS-WAS (2017)

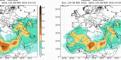
Model	Institution	Domain
BSC-DREAM8b_v2	Barcelona Supercomputing Center, Spain	Regional
CAMS	European center for Medium- Range Weather Forecast, U. K.	Global
DREAM-NMME-MACC	South east European Climate Change Center, Serbia	Regional
NMMB/BSC-Dust	Barcelona Supercomputing Center, Spain	Regional
MetUM	Met Office, U. K.	Global
GEOS-5	National Aeronautics and space Administration, U. S.	Global
NGAC	National Centers for Environmental Prediction, U. S.	Global
EMA REG CM4	Egyptian Meteorological Authority, Egypt	Regional
DREAMABOL	National Research Council, Italy	Regional
WRF-CHEM	National Observatory of Athens, Greece	Regional
SILAM	Finnish Meteorological Institute, Finland	Regional
CUACE/Dust	China Meteorological administration, China	Regional
MASINGAR	Japan Meteorological Agency, Japan	Global
ADAM	Korea Meteorological Administration, Korea	Regional

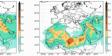
7 global models

11 regional models

15 organizations

3 regional nodes (NAMEE, Asia, Americas)


2 regional centers



Weather · Climate · Water

MAP-AQ - a Key

Monitoring

(In situ and space observations of weather and atmospheric composition)

Prediction

(Multi-scale shortterm weather and air quality predictions to protect public health)

International System for Monitoring, Analysis, and Prediction of Air Quality

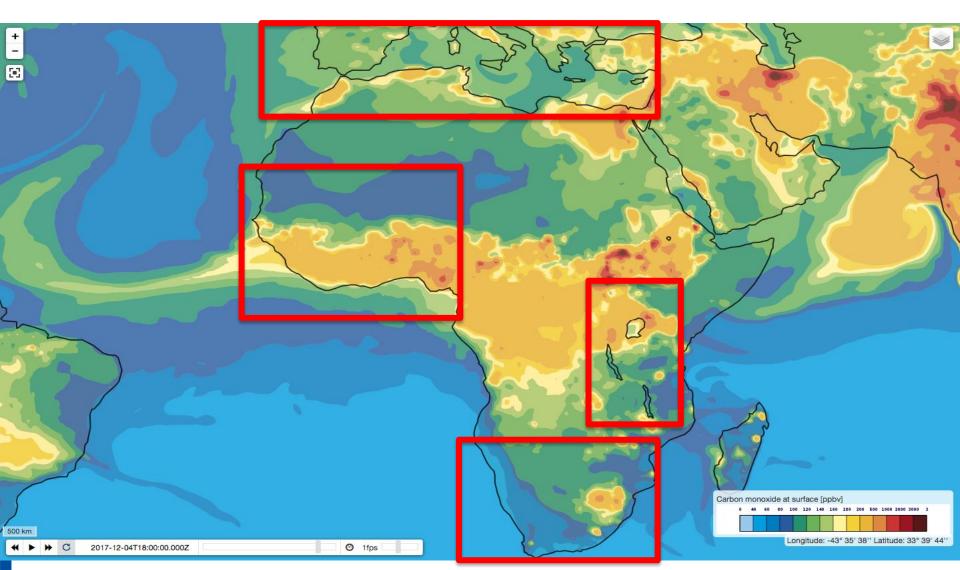
Scenario Analysis

(Design permanent air pollution control strategies to protect public health in longterm)

<u>ر الم</u>

GAW AQF Project

Management


(Translate technical details into actionable information and disseminate to public)

Capacity building

(Train local students, scientists and public in developing countries)

Using Global AQ Forecasts (CAMS and others) for Regional and Urban Downscaling in Africa

See: http://www.wmo.int/pages/prog/arep/gaw/WorkshoponSeamlessPredictionofAirPollutionforAfrica.html

Suggestions for cooperation with ICAP:

- GAW observations for evaluation and assimilation
- ICAP global ensemble for members: research and operational
- Contribution for SDS-WAS and GAW APP with global dust and atmospheric composition forecasts
- Host a global center for SDS-WAS and CWF
- Other GAW application areas for 200 Member countries and in support of Conventions
- Other suggestions from ICAP ?

Thank you!

ICAP is welcome contributing to WMO GAW

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

GLOBAL ATMOSPHERE

Some References

- Baklanov, A., D. Brunner, G. Carmichael, J. Flemming, S. Freitas, M. Gauss, O. Hov, R. Mathur, K. Schlünzen, C. Seigneur, and B. Vogel, 2017: Key issues for seamless integrated chemistry meteorology modeling. BAMS, Nov 2017, 2285-2292, doi:10.1175/BAMS-D-15-00166.1
- Baklanov, A., B. Vogel, and S. Freitas, Eds., 2015: Coupled chemistry–meteorology modelling: Status and relevance for numerical weather prediction, air quality and climate communities. EuMetChem-CCMM Special issue #370 ACP & GMD: www.atmos-chemphys.net/special_issue370.html (42 papers)
- WMO CCMM, 2016: Coupled Chemistry-Meteorology/Climate Modelling (CCMM): Status and relevance for numerical weather prediction, atmospheric pollution and climate research (Symposium materials).
 WMO GAW-WWRP-WCRP Report #226, Geneva, www.wmo.int/pages/prog/arep/gaw/documents/Final_GAW_226_10_May.pdf
- WWRP, 2015: Seamless Prediction of the Earth System: From Minutes to Months. WMO-No. 1156. 471 pp. http://library.wmo.int/pmb_ged/wmo_1156_en.pdf
- Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317-398, https://doi.org/10.5194/acp-14-317-2014, 2014.
- Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K.P., Sass, B.H., Rasmussen, A., Zakey, A., Kaas, E., Kurganskiy, A., Sørensen, B., and González-Aparicio, I.: Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2), Geosci. Model Dev., 10, 2971-2999, <u>https://doi.org/10.5194/gmd-10-2971-2017</u>, 2017.
- Grell, G. and A. Baklanov, 2011: Integrated Modeling for Forecasting Weather and Air Quality: A Call for Fully Coupled Approaches. Atmospheric Environment, doi:10.1016/j.atmosenv.2011.01.017.

Modelling recommendations for simulation of meteorological, chemical, biological variables

Modelling recommendations		r variables	s in	For applications		
	Met.	Chem.	Biol.	NWP	AQ	Clim.
Aerosol/chemistry transport and interactions to:						
 Identify shortcomings in transport schemes, Improve assimilation of meteorological 	Х	X	Х	X	Х	X
satellite data (better through a better representation of gases, aerosols, radiative transfer)	X	X		X	Х	
•Extend forecasts to AQ in weather time scale	x	х		х	х	
Meteorology impacts acting online to: •Reduce interpolation efforts and increase accuracy	х	х	x	х	х	Х
 Improve meteorology-dependent processes Improve cloud-connected processes. 	Х	X	Х	Х	Х	Х
	Х	Х	Х	Х	Х	Х

Recommendations for model evaluation of coupled meteorology, chemistry, biology models

Percommondations for avaluating models		For variables in For application					
Recommendations for evaluating models	Met.	Chem.	Biol.	NWP	AQ	Clim.	
International test-bed for model evaluation of urban- and mesoscale models (AQMEII+)	х	Х	Х	Х	х		
To be additionally evaluated: •Shortwave and longwave radiation, •Photolytic rate of NO ₂ , •AOD, COT, CCN •Cloud droplet number concentration •Precipitation	X X X	X X X	X X	X X X	X X X X X		
 Additional measurements needed for evaluations: Radiative forcing, PBL height or vertical mixing, Photolytic rates of NO₂, AOD, COT, CCN Long-term measurement data sets (incl. met. variables, aerosol and cloud properties, biol. 	X X X	X X X X X	X X X	X X X	X X X X X	X	
	Λ		MetChem: I			-	

Relevance of better knowledge on specific processes to improve simulation of meteorological, chemical, biological variables

Processes (clouds, aerosols)	For variables in For app					plications	
	Met.	Chem.	Biol.	NWP	AQ	Clim.	
Cloud processes •Microphysics, dynamics, •In-cloud and below-cloud scavenging, •Aqueous-phase chemistry	Х	X X X	X X X	Х	X X X	X X X	
Aerosol processes •Chemistry •Thermodynamics •Dynamics	(X)	X X X		(X) (X)	X X X	X X X	
Representation of aerosol-radiation-cloud- chemistry interactions (improve indirect estimates of aerosol effect)	x	x	x	x	x	x	

Relevance of better knowledge on properties to improve simulation of meteorological, chemical, biological variables

Droportios (clouds, porocols)	For variables in For applicat					
Properties (clouds, aerosols)	Met.	Chem.	Biol.	NWP	AQ	Clim.
Cloud properties •Droplet number concentrations, size distribution, •Cloud fraction, •Liquid water content, optical depths	X X X	(X) X X	X X	× (x) x	x x x	× × ×
Aerosol properties •Number, aerosol mass, size distribution •Composition, phase, hygroscopicity, mixing state, •Optical depths	(X) X	X X	X X	Х	X X X	X X X

Relevance of better process descriptions to improve simulation of meteorological, chemical, biological variables

Process (emissions)		variable	s in	For applications		
FIOCESS (EIIIISSIOIIS)	Met.	Chem.	Biol.	NWP	AQ	Clim.
Meteorology-dependent emission processes to be described more accurately: •Biogenic •Sea spray •Windblown dust •Lightning	(X)	X X X X	Х	(X)	X X X X	X X X X
Anthropogenic emission data in urgent need for improvement: •Ships •Wild fires •Volcanic eruptions	X	X X X		X	X X	X X X
Heat fluxes sources needing better knowledge:Wild firesVolcanic eruptions	X X	x x		x x	x x	X X

Model formulation and implementation aspects to improve simulations of meteorological, chemical, biological variables

	Fo	r variable	es in	For applications		
Model formulation and implementation	Met.	Chem.	Biol.	NWP	AQ	Clim.
Frequency of coupling between meteorology and chemistry models needs to be high enough to (at least) properly consider effects of mesoscale events (land-sea breeze, etc.).		х		(X)	x	(X)
Data assimilation methodology for meteorological and chemical data that avoids antagonistic effects and over- specification due to interactions between meteorological and chemical variables	х	х	х	х	х	Х
Consistency in processes ensures one single atmosphere is simulated (to achieve by improving collaboration of communities)	Х	х	х	(X)	Х	х
Online access modelling to be transferred to online integration of met., chem., biol., to avoid double work	Х	х	х	(X)	Х	х
WMO OMM		E.,	MatCham: P	aklanov S	chlünzon	ot al

WHAT IS OUR CURRENT UNDERSTANDING OF AEROSOL–CLOUD INTERACTIONS AND HOW WELL ARE RADIATIVE FEEDBACKS REPRESENTED IN NWP/CLIMATE MODELS?

- Shortwave radiation in CCMMs is the best represented radiative feedback process, while longwave radiation is less well represented and cloud
 – aerosol interactions are poorly described
- The indirect effects seem to be very sensitive to the sophistication of the chosen parameterizations and to the detail of the implementation. The models (e.g. AQMEII, WGNE) had very different results. Idealized model sensitivity studies on isolated clouds show a clear aerosol effect, while in more realistic simulations the atmospheric feedback is more complex, including chains of interactions with many other processes and with compensating effects. The large scatter in plots of laboratory data of particles' capability to act as ice nuclei shows that this is a topic for more research.
- In NWP: to develop diagnostics and validation methodologies to more explicitly separate the different effects of the intertwined feedback processes.
- Climate modeling: cloud–aerosol interactions are also not yet fully understood, in particular for ice clouds and mixed-phase clouds including midlevel and Arctic clouds.
- Experiments are needed that are specifically defined to look at chemistry–cloud microphysics at different scales. And the numerical and computational efficiency of the models will need to improve as the complexity of applications grows (e.g., scales).
- Climate community will need to develop CCMs with prognostic aerosol, which means the level of sophistication of such modules needs to be defined. For example, what is the trade-off between a more complex aerosol representation on the one side and model resolution, or the atmosphere—ocean coupling, on the other side? In addition, the
 consistency between resolution and parameterizations needs to be assessed.

WMO OMM

Geosci. Model Dev., 10, 2971–2999, 2017 https://doi.org/10.5194/gmd-10-2971-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2)

Alexander Baklanov^{1,a}, Ulrik Smith Korsholm¹, Roman Nuterman², Alexander Mahura^{1,b}, Kristian Pagh Nielsen¹, Bent Hansen Sass¹, Alix Rasmussen¹, Ashraf Zakey^{1,c}, Eigil Kaas², Alexander Kurganskiy^{2,3}, Brian Sørensen², and Iratxe González-Aparicio⁴

¹Danish Meteorological Institute (DMI), Copenhagen, Denmark
 ²Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
 ³Russian State Hydrometeorological University, St. Petersburg, Russia
 ⁴European Commission, DG – Joint Research Centre, Institute for Energy and Transport, Petten, the Netherlands
 ^anow at: World Meteorological Organization (WMO), Geneva, Switzerland
 ^bnow at: University of Helsinki, Helsinki, Finland

Role of mineral dust in cloud formation: modelling aspects

S. Nickovic^{1,2}, B. Cvetkovic¹, L, Ilic²,G. Pejanovic¹, S. Petkovic¹, F. Madonna³,M. Rosoldi³, D. Weber⁴ and H. Bingemer⁴, J. Nikolic¹ ¹Republic Hydrometeorological Service of Serbia (RHMSS), Belgrade, Serbia ²Institute of Physics Belgrade, Serbia ³Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'AnalisiAmbientale, Potenza, Italy ⁴Institut für Atmosphäre und Umwelt, Goethe-Universität,Frankfurt/M., Germany

9th International Workshop on Sand/Duststorms and Associated Dustfall, 22-24 May 2018, Tenerife, Spain

