FMI update

Rostislav Kouznetsov, Silam team

Contents

- Silam outlook
 - Operational suites
 - 10-km global fire-smoke suite
 - 20-km global full-chemistry suite 18°5
 - Validation
 - Data availability
- Some research highlights
 - Steam updates
 - Fire-source calibration
 - Source assimilation for African dust
- Conclusions

Wednesday 17 July 2019 00 UTC SILAM_AOD Forecast t+078.0 Saturday 20 July 2019 06 UTC Valid Time TOTAL_AOD Aerosol Optical Depth at 550nm

Plots Generated Wednesday 17 July 2019 00 UTC NRL/Monterey Aerosol Modeling

Silam in general

- An offline chemistry-transport model
- Global-to-meso-gamma scales (up to 1km resolution)
- Spans over the troposphere and the stratosphere with the corresponding physical and chemical mechanisms
- Eulerian and Lagrangian transport schemes
- Incorporates adjoint dispersion formalism, 3D- and 4D- variational and ensemble Kalman filter data assimilation
- Developed for a wide variety of problems, from emergency decision support to air quality and atmospheric composition studies and operational activities
- Open-code system, installed in 7 countries, modules used in >10 other models

SILAM v.5.6

- Modules
 - 10 chemical and physical transformation modules (8 open for operational use)
 - 9 source terms (all open)
 - 4 aerosol dynamics (3 open)
 - 3D-,4D- Var, EnKF, EnKS
- Domains: from global to beta-meso scale (~1km resolution)
- Meteo input:
 - ECMWF
 - HIRLAM, HARMONIE, AROME
 - WRF
 - ECHAM, NorESM, other GCM / RCM

SILAM AQ modelling

ILMATIETEEN LAITOS

Concentration, NO₂, ugN/m3, 00:0003N0V2018

Concentration, ugN/m3, 14Z17FEB2016

Operational AC/AQ-chain

Global: 20km (NEW), troposphere+ stratosphere

All forecasts: 4 days with 1hr step, SILAM v.5.5/5.6 http://silam.fmi.fi

Asia: 14km, troposphere

Concentration, ug03/m3, 17FEB2016

Hi-Res Fire suite 0.1 deg. glob

cnc PM FRP (srf), ug/m3 19:00, 10NOV2018

ocd PM FRP bsetime 20181110

Hi-Res Globe

- AQ/AC forecast
 - High-resolution
 - Global
 - Free-running

Applications:

- Global exposure effects
- Boundaries for regional AQ anywhere
- Many more...

0.2deg Global AQ suite

Concentration, ugN/m3, 20:0004DEC2018

- 0.2 deg ECMWF meteo
- MACCity inventory
- 7 days of forecast from -2 days, hourly output
- 29 layers up to 10 Pa
- Full CBM4 + Strato +SOA:
 113 tracers
- 3 hours @ 64 nodes
 of Cray XT40
 (3.5k CPU, hyper-threaded)

Challenges

- Very heavy runs
 - Compute power
 - Scalability
- Very large output
 - Post-processing
 - Distribution
 - Archiving
- Stratospheric chemistry
- Closed system
 - Integrates errors
 - Long relaxation times

Example:

CO burden in global simulations (one of first trials few years ago)

Currently, CO performs much better

Validation

- Satellite collocated columns
- NO2 -- DOMINO
- O3 -- OMI
- AOD MODIS
- In-situ
- Chinese AQ network
- O3 NO2 CO SO2 PM2.5 PM10
- http://silam.fmi.fi
 - -> AirQuality ->evaluation

MODIS vs Silam AOD evaluation

0.2 deg glob

0.5 deg glob

MODIS vs Silam AOD evaluation

Evaluation with Chinese stations

- ~1500 stations reporting hourly
- Unknown source/area type
- Unknown representativeness

Data access

- Pictures and animations online
- http://silam.fmi.fi/
- Hourly forecasts: last few days full model output online
- http://silam.fmi.fi/thredds (Model & data access -> All AQ forecasts)
- Needed subset can be requested
- Archives (on request):
- Surface hourly pollutants + daily mean, max
- Forecasts (first day fields)
- Retrospective simulations for past years

Fire smoke emission: IS4FIRES

Features of IS4FIRES v.2

- Top-down emission calibration for 7 land-use types
 - additional segregation of forests with regard to continents seems reasonable
- Bottom-up plume calculation with dynamic injection height
 - both fire features and meteorology drive the uplift
- High-energy permanent sources are masked out
- Aerosol size spectrum is reviewed and parameterized from direct observations (under evaluation)
- Separate consideration given to flaming and smoldering fires (in progress)

Challenge: Emissions depend on coverage

- Top-down calibration
- Incomplete information
- Observed fires
- Observed plumes
- Plumes from observed fires are biased due to nonobserved ones
- New observations will require recalibration
- Regional for geostationary satellites

IS4FIRES (MODIS) global totals

High-energy non-fire sources

- ✓ fires occurring in each 3 × 3 km pixel over the globe: MODIS-FRP
- ✓ Suspicious: > 50 fire days in a year
- ✓ Over 2002 2013, 402 cells were flagged more than 4 times.
- ✓ Final constraint: 9 years persistence.

- ✓ Clear impact of oil extraction/production plants
- ✓ AOD can be reduced by ~60% in the immediate vicinity of the sources but effect quickly falls out with distance from the oil flares.

Extension to non-PM (in progress)

- CO good indicator of incomplete combustion
- MOPITT CO columns
- SILAM plumes with Land-Use-Type and flaming/smoldering segregation
- Emission coefficients [kg/MJ]
- TODO: Scaling to other species, incl. PM precursors and recalibration of PM emissions

Emission Coefficients: FRP -> Rate

<u>Ship Traffic Emission AssessmentModel</u>

J.-P. Jalkanen, L. Johansson, J. Kukkonen Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, **167** (2017)403-415

Wartsila RTA-96C

STEAM3, key algorithms

- Hollenbach resistance calculation
 - Squat currently ignored
- Smart routing; Dijkstra
- Impact of waves; Townsin & Kwon
- Impact of sea ice; Riska et al
- Noise: Wittekind
- Emissions to:
 - Air: NOx, SOx, CO2, CO, EC, OC, Ash, VOCs (4), Particle Number

- Water: Bilge, Ballast, Grey/Black, Food waste, Antifouling, Scrubber (open/closed), stern tube oil
- Noise: 63, 125, 2000 Hz

Activity

- AIS, both terrestrial and satellite datasets
 - Baltic Sea: 2005- (t)
 - North Sea: 2009, 2011 (t)
 - Europe: 2011 (t)
 - Global 2014- (t + s)
- LRIT, tested only as a benchmark for AIS in Third IMO GHG work
- VMS, no access
- ICOADS, AMVER, departure/arrival times; not tested yet

Desert dust emission assimilation

- 1-deg run over Africa
- 6-um PM emission in every cell
- 0-50m emission height
- EnKF 300 members
- Independent emission perturbation
- 2-week temporal smoothing after each iteration
- Same meteo for all members
- MODIS AoD assimilated for 2015

- Validated with Aeronet 2017
- Compared to Annual scores at SDS-WAS (AE>0.6)

Emission

Assimilated dust vs AERONET AOD

RMSE

Correlation coefficient

	SILAM old	SILAM 2018	SDS-WAS median
Sahel/Sahara	0.39	0.30	0.31
Middle East	0.42	0.26	0.33
Mediterranean	0.20	0.18	0.15
All regions	0.35	0.26	0.28

Bias

	SILAM old	SILAM 2018	SDS-WAS median
Sahel/Sahara	-0.22	-0.03	-0.18
Middle East	-0.21	-0.02	-0.18
Mediterranean	-0.14	0.06	-0.10
All regions	-0.20	0.00	-0.16

	SILAM old	SILAM 2018	SDS-WAS median
Sahel/Sahara	0.39	0.47	0.75
Middle East	0.13	0.56	0.52
Mediterranean	0.60	0.56	0.72
All regions	0.44	0.52	0.74

Fractional gross error

	SILAM old	SILAM 2018	SDS-WAS median
Sahel/Sahara	0.88	0.49	0.56
Middle East	0.88	0.37	0.56
Mediterranean	1.16	0.44	0.85
All regions	0.96	0.46	0.64

Final remarks

- 0.2 degree full-chemistry and aerosols global forecasts
 - Technically feasible operational suite with NRT emissions
 - Compares ok with OMI, MODIS, DOMINO
 - Still many issues to address, aerosols OK
- IS4FIRES top-down fire PM, coefficients for CO, other gases coming
- STEAM ultimate bottom-up shipping emissions
- Desert dust emission assimilation:
 - Outperforms mechanistic models by scores (RMS, FGE etc..)
 - No dust storms
- All operational results and online evaluations: <u>http://silam.fmi.fi</u>

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

ר ר א א ר א א ר א א ר א א ר א א ר א א

26.7.2019 Nimi