

ESA Update for ICAP

23 July 2019

Simon Pinnock, ESA Climate Office, Harwell, UK with help from some ESA colleagues: Anne Grete Straum, Michael Eisinger, Christian Retscher, Claus Zehner

ESA UNCLASSIFIED - For Official Use

ESA-Developed Earth Observation Missions

FRS-

Satellites 25 under development 15 in operation

2015

_ II 🛌 II 🖛 + II 💻 🔚 _ II II _ _ _ II 🖬 📥 🔯 II _ II 🗮 📾 💥 🖮 🙌

ESA-Developed Earth Observation Missions

Satellites 25 under development 15 in operation

2015

Science: Earth Explorers

Image: Imag Image: Image:

Aeolus – ESA's Wind mission

ESA UNCLASSIFIED - For Official Use

- Direct detection UV Doppler Wind Lidar (355 nm), 80mJ laser output, 50 Hz PRF, 2 receiver channels
- Mie receiver to determine winds from aerosol & cloud backscatter (Fizeau)
- Rayleigh receiver to determine winds from molecular backscatter (Double edge Fabry-Perrot)
- The line-of-sight (LOS) points 35° from nadir to capture profiles of single component horizontal wind (LOS wind is projected to HLOS)
- Pointing orthogonal to the ground track to remove contribution from satellite velocity
- Ground return used for attitude correction and instrument calibration

ESA | 23/07/2019 | Slide 5

Courtesy Michael Rennie, ECMWF

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 6

+

European Space Agency

esa

Aeolus data products and requirements

- 1. Level 1B:
 - a. Preliminary horizontally projected LOS winds (HLOS), not p and T corrected and not scene classified
 - b. Input to Level 2B processor (no direct scientific use in its own)
- 2. Level 2B:
 - a. Scene classified, temperature and pressure corrected HLOS winds
 - Four products: Rayleigh clear/cloudy, Mie cloudy/clear
 - b. Random errors < PBL: 1 m/s, FT: 2.5 m/s, Stratosphere: 3-5 m/s
 - c. Bias < 0.7 m/s
 - d. NRT, ESA EE format, BUFR data via EUMETCAST (BUFR convertor available)
- 3. Level 2C:
 - a. Assimilated winds from ECMWF model at location of Aeolus Level 2B observations
- 4. Level 2A:
 - a. Atmospheric backscatter and extinction coefficient profiles (NRT)
 - b. Circularly polarized emitted light
 - c. Cross-polarized part of backscattered light not measured, cloud and aerosol separation not yet fully implemented!

ESA UNCLASSIFIED - For Official Use

Flight direction Dusk/dawn orbit

Jawn orbit Courtesy N. Žagar

ESA | 23/07/2019 | Slide 7

ESA | 23/07/2019 | Slide 8

European Space Agency

The Aeolus aerosol product is still under development. For the product on 87 km scale, the backscatter and extinction is given for aerosol+cloud scenes together, hence not useable for ICAP. On smaller scale a cloud and aerosol separation is attempted, but not yet working. There will be some substantial work done to improve on this during the coming 6-12 months. I.e. we hope to give aerosol and cloud backscatter and extinction separately in the product around the middle of next year. What will be in the next release, however, is cross-talk corrected signals which can be used by the users.

We have now switched to laser-B, and the laser is very stable so far. This means that we are expecting not to lose energy with time as we experienced with laser A, and if it occurs we expect to be able to correct for it by optimization of the instrument settings. We expect the instrument to be working well for the coming few years.

ESA UNCLASSIFIED - For Official Use

EarthCARE: Status

- Platform fully integrated. BBR delivered and integrated on platform. Platform/BBR assembly currently in storage due to EarthCARE Payload Bridging Phase
- MSI fully calibrated, now undergoing final testing on instrument level. Expected delivery Oct 2019.
- ATLID instrument integration completed. Ambient performance tests ongoing, to be followed by tests in thermal vacuum. Expected delivery end 2019
- CPR pre-delivered for pre-integration. Now back at provider. Anomalies in High Power Transmitters under investigation. Expected delivery Nov 2020.
- Launch date: June 2022

Ground Segment development status

- L1 and L2 processors and end-to-end simulator E3SIM available, further tunings and adaptations and full scientific verification ongoing
- Ground segment facilities available, system integration ongoing

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 9

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 10

ESA UNCLASSIFIED - For Official Use

ATLID

+

ESA | 23/07/2019 | Slide 11

MSI

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 12

BBR

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 13

CPR

+

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 14

ESA-Developed Earth Observation Missions

Satellites 25 under development 15 in operation

2015

__ II 🛌 II 🖛 🕂 II 🗮 🚝 __ II II __ __ II 🚛 🔤 II 📰 II 💥 🛏 🙌

Copernicus – Sentinel Status

= II 🖕 ## ## II = 🔚 = 11 II = = ## 🛶 🔯 II = ## ## ## i+|

Overview Sentinel-3 Atmospheric Products

	Atm dedicated EUMETSAT	Atm dedicated ESA	Others (e.g. Research, Atm correction parameters etc)		
Aerosol Optical Depth (AOD)	SLSTR NRT Under evolution & evaluation Global	SYN OLCI+SLSTR NTC Under development & evaluation Global	OLCI – NRT – Existing EUMETSAT In L2 OC (AC standard NIR correction), water surfaces ESA/CCI ATSR/SLSTR: Swansea, FMI, Oxford/RAL, Rayference MERIS/OLCI: Bremen, DLR		
Fire Radiative Product (FRP)	SLSTR NRT - Under development & evaluation Global, day & night	SLSTR NTC - Under development & evaluation Global, day & night			
Total Column Water Vapour (TCWV)	OLCI - Existing, under improvement In OC L2 product, evolution Global SLSTR - To be initiated Water surfaces, day & night	OLCI - Existing In Land L2 product	MWR – NRT - Under preparation - EUMETSAT For altimetry correction, water surfaces ESA/CCI OLCI/MODIS/MERIS: FUB/SE (land and coast)		
Cloud Top Pressure (CTP)	OLCI NRT - Under Preparation Global				
Cloud mask	OLCI - Existing in L2 Global SLSTR Existing in L1 (basic) and L2 (Bayes. / Prob.) Global SYN OLCI+SLSTR - To be initiated Global		ESA/CCI Cloud mask, CTT/CTP, optical depth, eff. radius, LWP, IWP, Phase AVHRR/MODIS/ATSR/SLSTR: DWD/Oxford/RAL OLCI/SLSTR: FUB		
ESA UNCLASSIFI	ED - For Official Use	ESA 23/07/2019 Slide 17			

= II 🛌 == + II = 🔚 = 🔚 = II II = = = 🖬 🛶 🚺 II = = II 👯 🖕

+

Sentinel-3 Aerosol NRT – SLSTR AOD

Initial Algorithm & Processor

- Developments in the framework of S3 Mission Performance Centre (MPC) under ESA contract.
- Final Delivery to EUMETSAT in October 2018.
- EUMETSAT fully in charge of maintenance, long-term evaluation, validation monitoring, evolution, deployment.

Scientific approach

University of Swansea (P. North, et al., S3 AOD NRT ATBD, 2016

- ✓ Historically applied to dual-view instruments ATSR 1&2, AATSR (ref. ESA CCI_aerosol project)
- ✓ 5 spectral channels at 554 nm, 659 nm, 868 nm, 1.613 um, 2.255 um
- ✓ Viewing constraints: multi-angular dual-view over land, nadir view over ocean
- ✓ Physical based surface model Iterative optimization of AOD, aerosol model & surface reflectance
- ✓ Spatial resolution 4.5 km

North, *et al.*, 1999

On-going analyses / validation performed by EUMETSAT for necessary evolutions before operational release:

Optimal adaptation to be achieved thanks to up-to-date acquired knowledge on SLSTR sensor specificities (*e.g.* geometry, radiometry calibration, etc..)

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 18

□ II ≥ II = + II = ⊆ II II = Ξ = H = Ø II = II ₩

SLSTR AOD NRT – Expected potential (some examples)

SLSTR A

+

Massive Thomas fire,

Sentinel-3 Aerosol NTC – OLCI/SLSTR Synergy

Algorithm:

- Synergy approach combining information from both SLSTR and OLCI
- Originally developed by P. North *et al.* under ESA contract for MERIS/AATSR synergy algorithms for cloud screening, aerosol, atm. corr. and surface reflectance.

Main differences from NRT algorithm:

- Addition of extra OLCI spectral bands and a spectral constraint for land surface reflectance
- Use of OLCI for improved cloud screening
- More detailed atmos. model with variable ozone and w.v. concentrations

Products:

- ✓ AOD (550nm and FMF, plus other derived parameters, e.g. dust) at spatial resolution of 4.5 km
- ✓ Coverage:
 - ✓ Ocean: 1420 km SLSTR swath (nadir and dual-view)
 - ✓ Land: 720 km SLSTR dual-view + SLSTR-nadir over the 1270 km OLCI swath
 - ✓ No retrieval over cloud/sun-glint/snow/ice

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 20

= 11 ba = = + 11 = 🚝 = 11 11 = = = H 🖬 🖬 11 = = H 💥 📾

Example results – Sentinel-3 NTC aerosol (OLCI/SLSTR synergy)

ESA UNCLASSIFIED - For Official U

ESA | 23/07/2019 | Slide 21

÷

Example results – Sentinel-3 NTC aerosol (OLCI/SLSTR synergy)

AATSR–SU mean AOD 201112

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 22

+

Sentinel-5 Precursor COPERNICUS ATMOSPHERE MISSION IN POLAR ORBIT

The Sentinel-5 Precursor (S5p) is the first **atmospheric Sentinel** mission focusing on global observations of the atmospheric composition for **air quality** and **climate monitoring**. Launched on **Oct. 13 2017** with a **7 years** design lifetime.

The TROPOspheric Monitoring Instrument (**TROPOMI**) is the payload of the S5P mission and was jointly developed by **The Netherlands and ESA**. Polar synchronous orbit at a height of about 820 km. Global coverage within 1 day (swath of 2600 km). Ground-pixel spatial resolution of 7 x 3.5 km. Open data access following the Copernicus Data Policy.

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 23

opernicus Sentinel-5 Precursor Products

Sentinel-5 Precursor mission operations \rightarrow in operations since April 2018 and in routine operations since March 2019

Methane (CH₄) – 01 March 2019 Tropospheric Ozone Column (trop. O₃) Sulfur Dioxide (SO₂) Formaldehyde (OCHO) Total Columns of Ozone (O₃) Nitrogen Dioxide (NO₂) **Carbon Monoxide (CO) Cloud** information **Aerosol** information Radiances/Irradiances – 10 July 2018

Copyright: Contains modified Copernicus Sentinel data (2018-2019) / processed by KNMI

Sentinel-5P TROPOMI

first yearly average NO₂ map April 2018 – April 2019

Troposperic NO2 column (µmol/m2) 60

20

40

S5p Aerosol Index Examples

Copyright: Contains modified Copernicus Sentinel data (2017-2019) / processed by KNMI

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 25

S5p Aerosol Layer Height

(already validated and to be released to the public early autumn 2019)

Copyright: Contains modified Copernicus Sentinel data (2017-2019) / processed by NOAA and KNMI

ESA UNCLASSIFIED - For Official Use

Daily Average PM AQT Friday May 31, 2019 Alaska Hawaii Mexico Mexico Eneroted: 2019-06-01.16:00:202

- Near the source region in Alberta, surface PM2.5 concentrations moderate (code yellow) indicating some smoke near the ground but mostly aloft if present. TROPOMI plume height > 2km.
- Away from source region in the US smoke spread far and wide and surface PM2.5 concentrations moderate (code yellow) indicating some smoke near the ground but mostly aloft if present. TROPOMI plume height > 2 km

ESA | 23/07/2019 | Slide 26

Sentinel-5p+ Innovation Project Theme 5: AOD/BRDF – DARIUS (just started!)

DARIUS

Development of advanced retrieval of aerosol and surface properties from Sentinel-5P observations.

Main objectives

- Aerosol Optical Depth (AOD)
- Absorption and type of the aerosol
- Surface reflectance, BRDF

Partners

- GRASP SAS
- Catalysts
- KNMI

ESA UNCLASSIFIED - For Official Use

Sentinel-5p+ Innovation Project Theme 5: AOD/BRDF – DARIUS

Approach

- Evaluation of OMI heritage AOD and BRDF algorithms for S5P;
- Integration of OMI heritage best practices and the GRASP algorithm;
- Performing GRASP algorithm adaptations for S5P;
- Provision of a consolidated S5P AOD and BRDF algorithm;
- Intercomparison
 - AOD: OMI, MODIS, and AERONET;
 - BRDF: use existing LER products, MODIS, GRASP/PARASOL BRDF

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 28

+

· = ■ ► = = + ■ = ≡ = ■ ■ ■ = = = ■ ■ ■ ■ = = ■ ■ ■

Essential Climate Variables (ECVs)

United Nations Framework Convention on Climate Change

Measurement domain	Essential Climate Variables				
Atmospheric	Surface: air temperature, wind speed and direction, water vapour, pressure, precipitation, surface radiation budget Upper-air: temperature, wind speed and direction, water vapour, cloud properties, Earth radiation budget, lightning Composition: carbon dioxide (CO2), methane (CH4), other long-lived greenhouse gases, ozone, aerosol, precursors for aerosol and ozone				
Oceanic	Physics: temperature: sea surface and subsurface; salinity: sea surface and subsurface; currents, surface currents, sea level, sea state, sea ice, ocean surface stress, ocean surface heat flux Biogeochemistry: inorganic carbon, oxygen, nutrients, transient tracers, nitrous oxide (N ₂ O), ocean colour Biology/ecosystems: plankton, marine habitat properties				
Terrestrial	Hydrology: river discharge, groundwater, lakes, soil moisture Cryosphere: snow, glaciers, Ice sheets and Ice shelves, permafrost Biosphere: albedo, land cover, fraction of absorbed photosynthetically active radiation, leaf area index, above-ground biomass, soil carbon, fire, land surface temperature Human use of natural resources: water use, greenhouse gas fluxes				

+

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 29

₩

ESA Aerosol_cci project (cci.esa.int/aerosol)

CCI Phases 1 & 2 (2010–2018) – 23 partners

		-			-
	German Aerospace Center	DLR	Main contract	Oberpfaffenhofen	D
	Finnish Meteorological Institut	FMI	Sub contract	Helsinki	FI
	Barcelona Supercomputing Center	BSC	Sub contract	Barcelona	ES
	Belgium Institute for Space Aeronomie	BIRA	Sub contract	Uccle	В
	Centre National de la Recherche Scientifique	ICARE	Sub contract	Lille	F
	Eidgenössische Technische Hochschule Zürich	ETHZ	Sub contract	Zürich	СН
	Freie Universität Berlin	FUB	Sub contract	Berlin	D
	Laboratoire de Meteorologie Dynamique	LMD	Sub contract	Paris	F
	Lille Observatoire Atmospherique	LOA	Sub contract	Lille	F
	London Metropolitan university	LonMet	Sub contract	London	UK
	Max Planck Institut	MPI	Sub contract	Hamburg / Mainz	D
	Meteorological Institute of Norway	MetNo	Sub contract	Oslo	NO
	Norwegian Institut for Air Research	NILU	Sub contract	Oslo	NO
	Oxford university	UOx	Sub contract	Oxford	UK
	Rayference	RF	Sub contract	Brusseles	В
	Royal Meteorological Institute	KNMI	Sub contract	De Bilt	NL
	Rutherford Appleton Laboratory	RAL	Sub contract	Harwell	UK
	Swansea university	SU	Sub contract	Swansea	UK
	Universität Bremen	UB	Sub contract	Bremen	D
	Universite Libre de Bruxelles	ULB	Sub contract	Brusseles	В
	University of Derby	UD	Sub contract	Derby	UK
	Technical University Delft	TUD	Sub-sub contract	Delft	NL
ESA UNCLASSIFIED	University of Saskatchewan	US	Sub-sub contract	Saskatoon	CAN

ESA | 23/07/2019 | Slide 31

+

ESA Aerosol_cci project (cci.esa.int/aerosol)

CCI Phases 1 & 2 (2010–2018) – Aerosol data sets

- ATSR-2 / AATSR AOD, FMAOD, Angstrom (1995–2012) 3 algorithms
 - U. Swansea, FMI, Oxford/RAL
- **IASI** Dust AOD (2007–2015) 4 algorithms
 - ULB, LMD, BIRA, DLR
- **PARASOL** AOD, Angstrom, SSA, non-spherical LOA/GRASP
 - Selected regions (2006–2013) plus all Africa for one year (~2008)
- Multi-mission UV AAI (1978–2013) KNMI
 - TOMS/GOME/SCIAMACHY/GOME-2/OMI
- **GOMOS** Stratospheric extinction vertical profiles AERGOM
 - BIRA

ESA Aerosol_cci project (cci.esa.int/aerosol)

CCI Phases 1 & 2 (2010–2018) - Investigations

- **MERIS/OLCI** AOD (2008) 2 algorithms
 - XBAER (U.Bremen), SeaWiFS-4-MERIS (DLR)
- **SEVIRI** Hourly-AOD (2008) for aerosol-cloud interactions
 - CISAR (Rayference)
- Experimental algorithm intercomparisons:
 - Aerosol layer height (IASI, UV-VIS)
 - Aerosol absorption (MERIS, AATSR, PARASOL)
- Case Studies into the use of satellite AOD:
 - Trends, AOD assimilation, model verification, radiative forcing, aerosol-cloud interactions, volcano emission inventories, ...

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 33

ESA Aerosol_cci project – ATSR AOD

0.50

0.30

0.10

0.08

0.06

0.04

0.02

0.50

0.10

0.10

0.08

0.06

0.04

0.02

0.50

0.30

0.10

0.08

0.06

0.04

0.02

19 | Slide 34

IN Space Agency

NOUTOE: AEROCOM

135 180

135

180

source AEBOCOM

Left: AOD error statistics Middle: annual AOD Right: FM-AOD

Top: U. Swansea Middle: FMI Bottom: Oxford/RAL

ESA UNCLASSIFIED - For Official Use

ESA Aerosol_cci project – IASI Dust AOD

Example dust AOD from ULB (L. Clarisse)

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 35

ESA Aerosol_cci project - GOMOS extinction profiles Cesa

Comparison of stratospheric aerosol extinctions (in log₁₀ scale) based on GOMOS retrievals (top) and EMAC model simulations (bottom) at 550nm wavelength (C. Bruhl, MPI-Chem)

1/km, 550nm, 20°S-20°N, EMAC,V2

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 36

New ESA Aerosol_cci+ project (2019–2022)

- Led by **DLR**, but now focus on just the ATSR-2 AATSR SLSTR series
- Develop and qualify two algorithms with different maturity :
 - **U. Swansea**: mature algorithm from Aerosol_cci which provided best combination of quality, uncertainty characterisation and size information (Ångström exponent)
 - **Rayference**: innovative optimal estimation algorithm based on the continuous variation of the state variables (AOD, SSA, phase function) in the solution space, and using temporal accumulation to provide a multi-angular obs vector.
- Conduct two specific user case studies to demonstrate the value of the datasets for different application domains:
 - MPI: aerosol modelling / radiative forcing
 - **ECMWF**: data assimilation for reanalysis and forecasting

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 37

= ■ ▶ = = + ■ + ■ ≡ = 2 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Thanks for your attention

simon.pinnock@esa.int cci.esa.int

ESA UNCLASSIFIED - For Official Use

ESA | 23/07/2019 | Slide 38

####