ICAP Meeting, Tokyo, Japan, Jul 22-24, 2019

Merged aerosol products from GEO satellite observations

Jhoon Kim¹, Seoyoung Lee¹, Hyunkwang Lim¹, Sujung Go¹, Myungje Choi^{1,2}, Yesl Cho¹, Heesung Chong¹

> ¹Yonsei University, Seoul, Korea ²NASA JPL, Pasadena, CA

Development of Satellite RS for Aerosols & Gases

Kim et al.(submitted & revised, BAMS)

Diurnal variation for aerosol from GOCI and AHI

Mean AOD dist. and validation during the KORUS-AQ

Similar accuracy with LEO

Validation of GOCI AOD, AE, FMF, and SSA (Mar 2011 – Feb 2016, 5-yr)

Collocation with 27 AERONET sites for land AOD, and 17 coastal sites for ocean AOD

- $EE_{DT} = \pm (0.05 + 0.15 \times AERONETAOD)$ ٠
- AE, FMF, and SSA comparison: only for AERONETAOD > 0.3 ٠
- Collocation criteria: ٠

(spatially) average satellite pixels within 25 km radius from AERONET sites (temporally) average AERONET data within 30 min from satellite measurement Choi et al. (AMT 2018)

Merging aerosol property retrieval

Merging : GOCI AODs with cloud masking by AHI IR

Comparison of GOCI results with MODIS & VIIRS

- Improvement in cloud masking over ocean, in particular

KORUS-AQ Daily Merged AOD product (0.5°×0.5° grid)

- Purpose: finding daily representative AOD from multiple LEO and GEO AOD products
- Study domain: 110-150°E, 20-50°N (0.5°×0.5° lon-lat grid resolution)
- Order of calculation
 - 1) Spatiotemporal mean for each product within each day
 - Spatial gridding for each scene, and temporal averaging for daily mean.
 - additional filtering based on Hyer et al. (2011) to reduce cloud contamination
 - 2) For each grid, select **median value AOD** product as daily representative AOD (only when at least two products are available)
 - 3) Average of daily fused AOD during the Campaign period (5/1-6/12)

AOD comparison btn AERONET and Satellite

Comparisons of AOD from AHI MRM, ESR, BRDF during KORUS – AQ campaign

• Yonsei university

Results of MLE in 2016

Comparison of Biases (2016)

Kim et al. (2017) with update

Seasonal Trends in AODs (Mar 2011 - Feb 2018)

- -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
- -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

 $-0.08 \quad -0.06 \quad -0.04 \quad -0.02 \quad 0.00 \quad 0.02 \quad 0.04 \quad 0.06 \quad 0.08$

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Trends in FMF (Mar 2011 - Feb 2019)

- Decreasing trend of FMF over East Asia from GOCI during 2011-2019.
- In Beijing, increasing trend from GOCI

Detection of Long Range Transport: case of March 4, 2019

Channels from GEO Satellites over E. Asia

Channel No	Channel	AMI	AHI	мі	GOCI-1	GOCI-2	GEMS	(unit:
1	VIS(blue)	0.470	0.46		_ 0.412 0.443	0.380 0.412 0.443	0.3 – 0.5	(² -
2	VIS(green)	0.511	0.51		0.490 - 0.555	0.490 0.510 0.555	1000 channels	
3	VIS(red)	0.640	0.64	0.675	- 0.660 0.680 - 0.745	0.620 0.660 0.680 0.709 0.745		
4	VNIR	0.865	0.86		0.865	0.865		
5	SWIR	1.380						
6	SWIR	1.610	1.6					
			2.3					
7	MWIR	3.830	3.9	3.75				
8	MWIR(WV)	6.241	6.2					
9	MWIR(WV)	6.952	7.0	6.75				
10	MWIR(WV)	7.344	7.3					
11	TIR	8.592	8.6					
12	TIR	9.625	9.6					
13	TIR	10.403	10.4	10.8				
14	TIR	11.212	11.2					
15	TIR	12.364	12.3	12.0				
16	TIR	13.31	13.3					
Reference			Lim et al. (RS 2018)	Kim et al (IJRS 2008)	Choi et al (AMT 2016)	Choi et al (AMT 2018)	Kim et al (revised)	

μm)

Data Assimilation of GOCI AOD data

	Model / data used	Product	1.2				
Park et al., ACP, 2014	CMAQ , DA	DA, to quantify long range transport	- 1 - 0.8 - 0.6				
Saide et al., GRL, 2014	WRF-Chem, DA	DA, surface PM validation	0.4				
Xu et al., ACP, 2015	GEOS-Chem	Surface PM2.5	0 -0.2 -0.4				
Xiao et al., ACP, 2016	VIIRS, GOCI, MODIS AOD	Validation	-0.6 -0.8 -1				
Lee et al., GMD, 2016	CMAQ	To improve PM forecast	-1.2				
Jeon et al., GMD, 2016	CMAQ + STOPs v1.5	To Improve PM10 forecast					
Pang et al., AE, 2018	WRF-Chem 3D Var	To improve PM2.5 forecast	, , ,				
Ed Hyre et al. JCSDA news., 2018	NAAPS	sub-daily variation comparison with model and observation (AERONET, GOCI, MODIS)					
Lee et al., RSE, 2017	WRF-Chem, DA using OMI	Evaluation of DA using GOCI					
Lennartson et al ACP, 2018	AERONET, GOCI, in-situ PM2.5, WRF-Chem	Comparison of diurnal variation of AOD and PM2.5					
	Dust	Day Anthro Anthro Smoke					
aide et al., GRL	_ 2014						

Column to Surface Concentration – Aerosol

- Machine Learning
 Algorithm
- Monthly average estimated PM2.5 and in situ PM_{2.5}, 2017

120

100

80

60

40

20

0

1 2 3

5

Month

4

Estimated PM2.5 [ug/m3]

Month

OMI mean tropospheric NO₂ & SO₂ VCDs (2005 - 2018)

EI

OMI mean tropospheric NO₂ VCDs & trends (2005–2018)

OMI mean tropospheric SO₂ VCDs & trends (2005–2018)

Oversampled TROPOMI tropospheric NO₂ VCDs in August 2018

Major cities and roads in Korea and Japan can be seen from the mean NO₂ map.

Oversampled TROPOMI tropospheric SO₂ and CO VCDs

AMI onboard GK-2A launched last week GEMS onboard GK-2B launch in a year

OMI mean NO₂ (from 2005 to 2014) over GEMS FOR

Summary

- The retrieved GOCI V2 AOPs show reliable qualities against ground-based AERONET. YAER algorithm is being improved for GOCI-II with its higher spatial resolution of 250 m and additional channels in UV.
- Aerosol products from GOCI (hourly) and AHI (every 10 minute) YAER algorithm provide diurnal variation information of aerosols. Therefore, these can provide observational dataset for data assimilation with air-quality forecasting over Asia.
- Merged dataset from different satellites and algorithm provide improved results with reduced bias and better spatial coverage.
- Precursors of aerosols have been observed by LEO missions including OMI, TROPOMI, GOME, SCHIAMACHY etc., and will be observed by GEO missions from 2020.

Acknowledgement

AHI dataset – Yasko Kasai, GOCI – KIOST, AMI – KMA, GEMS – NIER