

Scientific Development for Operational Aerosol Products

Present and Future

Bertrand Fougnie

Margarita Vazquez-Navarro, Julien Chimot, Thierry Marbach

and the Cloud & Aerosol Team

Remote Sensing Product Division

EUMETSAT missions: *current* and future

글는

- 📵 🚺 🕶 💳 💳 🕂 🕂 🐼 緣

EUMETSAT and Copernicus

EUMETSAT activities in support to Copernicus

- Legal Framework:
 - EUMETSAT: Third Party Programme foreseen by the Convention approved in October 2014
 - EU: Delegation Agreement foreseen by the Copernicus Regulation signed in November 2014
- Focus: ocean and atmospheric composition monitoring
- Cooperation with ESA on development and operations
- Vision : deliver integrated data streams (from Copernicus, EUMETSAT and third party missions)
- Objective : create synergies with EUMETSAT own infrastructures

SENTINEL-1: 4-40m resolution, 3 day revisit at equate	or	S1A and 1B in orbit	F
SENTINEL-2: 10-60m resolution, 5 days revisit time		S2A and 2B in orbit	F
SENTINEL-3: 300-1200m resolution, <2 days revisit		S3A and S3B in orbit	C n
SENTINEL-4: 8km resolution, 60 min revisit time		1st Launch 2022	P
SENTINEL-5p: 7-68km resolution, 1 day revisit		S5P in orbit	N k
SENTINEL-5: 7.5-50km resolution, 1 day revisit		1st Launch 2023	F
SENTINEL-6: 10 day revisit time		1st Launch 2020	R
Preparing Sentinel-7			co

Polar-orbiting, all-weather, day-and-night radar imaging

Polar-orbiting, multispectral optical, high-resolution imaging

Optical and altimeter mission monitoring sea and land parameters

Payload for atmosphere chemistry monitoring on MTG-S

Mission to reduce data gaps between ENVISAT, and Sentinel 5

Payload for atmosphere chemistry monitoring on MetOp 2ndGen

Radar altimeter to measure seasurface height globally

CO2 monitoring

Third party programmes in support of Copernicus

SENTINEL-5/UVNS Level-2 products	Parameter(s)
03	Ozone (O3) total column, tropospheric column, stratospheric vertical profile
NO2	Nitrogen dioxide (NO2) total column, tropospheric column
SO2	Sulfur dioxide (SO2) total column, layer height (TBC)
нсно	Formaldehyde (HCHO) total column
сносно	Glyoxal (CHOCHO) total column
CH4	Methane (CH4) total column
со	Carbon monoxide (CO) total column
Cloud	Cloud effective fraction, effective height, cloud mask
Aerosol	Aerosol UV absorption index, layer height, optical depth (TBC)
Surface	Surface effective albedo, scene heterogeneity
UV	UV spectrally resolved irradiance at surface, UV index

SENTINEL-4 Level-2 products	Parameter(s)
O3	Ozone (O3) total column, tropospheric sub- column,
NO2	Nitrogen dioxide (NO2) total column, tropospheric sub-column
SO2	Sulfur dioxide (SO2) total column
НСНО	Formaldehyde (HCHO) total column
СНОСНО	Glyoxal (CHOCHO) total column
Cloud	Cloud optical thickness, fraction, altitude
Aerosol	Aerosol column optical thickness, type, layer height, absorbing index
Surface	Surface and aerosol characteristics

Third party programmes in support of Copernicus

From weather to environmental forecasting

Meteosat 9 IR10.8 20080525 0 UTC

ECMWF Fc 20080525 00 UTC+0h:

	EUMETCast eumetcast.com	Multi-service push dissemination via satellite or terrestrial networks
	Copernicus Online Data Access (CODA) coda.eumetsat.int	Download service offering all Sentinel-3 span up to 12 months of data.
	Data Long-Term Archive archive.eumetsat.int	EUMETSAT's long-term archive of products, including Copernicus Sentinel-3
	EUMETView eumetview.eumetsat.int	Visualisation service allowing users to view EUMETSAT data and Copernicus Sentinel-3
ELINETSATE VESSE	New: Copernicus WEkEO DIAS www.wekeo.eu	A federated approach: The most up-to-date Copernicus data and an expanding data offer in the future Distributed open architecture concept, federative and scalable, implemented by European industry.

Aerosol Products

S

Summary

Heritage and current developments :

- **<u>EPS/PMAp</u>** : Combination of instruments
 - LUT retrieval and spectral combination (Grzegorski et al. in prep)
- <u>S3/SLSTR</u> : Dual-view radiometer
 - Aerosol retrieval with a physical based surface model from U. Swansea (North. et al. 1999)
- S3/OLCI : Multispectral Pushbroom
 - Simultaneous aerosol / surface retrieval with GRASP (Dubovik et al. 2014)

Next generation of aerosol products :

- **EPS-SG/3MI** : Multi-directional Polarimeter
 - Simultaneous aerosol / surface retrieval with GRASP (Dubovik et al. in prep)
- **<u>EPS-SG/MAP</u>**: Multi-sensor
 - Combination of PMAp and 3MI
- **<u>MTG/FCI</u>** : Geostationary imagers
 - Simultaneous aerosol / surface retrieval with AERUS (Carrer et al. 2014)

Products from sensors currently in-orbit

EPS (EUMETSAT Polar System)

- 3 LEO satellites : Metop-A (2007), Metop-B (2013), Metop-C (2019)
- 3 instruments for aerosol retrieval GOME-2, AVHRR, IASI → hyper-instrument

<u>Sentinel-3 (Copernicus)</u>

- 2 LEO satellites : S3-A (2016) and S3-B (2018)
- 2 instruments for aerosol retrieval SLSTR, and OLCI

EPS sensors – creating a hyper-instrument

PMAp : Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI

co-location

AVHRR pixel

EUMETSAT

PMAp Main Updates

- Operational product, Currently Version 2.1.0 (Feb 2017)
 - Surface homogeneity test
 - Surface elevation correction function for Rayleigh scattering calculation
 - Surface reflectance database (LER v1.6) statically masked for more accurate land/water areas partition
 - Volcanic Ash/SO₂ class using thermal IR IASI measurement
- Next Release 2.2 coming mid-2019
 - GOME-2 PMDs L1 radiance correction for degradation (degradation + offset)
 - Surface reflectance database (LER) now based on MetopA & B
 - Improved detection and AOD quality for thick desert dust -in particular over bright surfaces and discrimination w.r.t. to water clouds (IASI spectrum)
 - \rightarrow Under refinement by EUMETSAT and evaluation by CAMS
 - Very good consistency between Metop-A, -B, and -C
 - The specific case of dust over clouds creates "hotspots" on AOD retrieval : to be discarded or flagged

PMAp V2.1 Metop-C

- PMAp-C V2.1
 - PMAp-C activated after the L1 in-flight calibration update of GOME
 - Product quality very similar to PMAp-B
 - Currently in GS1. Pre-operational status : released for Trial dissemination (to Cal/Val partners)

$\mathsf{PMAp V2.1} \rightarrow \mathsf{V2.2}$

Aerosol Class

fine mode coarse mode volcanic ash / thick dust volcanic ash with SO₂

PMAp V2.2

- Investigation on the HotSpots
 - IASI detection of dust over ocean
 - This corresponds also to cloudy situations in V2.2 cloud test skipped because dust event is supposed to be non-cloudy
 - Impact not only hot-spot (saturation of AOD)
 - Update = to force the cloud-test even if dust

PMAp Aerosol Optical Depth 2013081800000 2013081900000

PMAp V2.2

Investigation on the HotSpots

- IASI detection of dust over ocean : corresponds sometimes to cloudy situations in V2.2 cloud test skipped because dust event is supposed to be non-cloudy
- Impact not only hot-spot (saturation of AOD)
- Update in V2.2b = to force the cloud-test even if dust
 - Now identified as cloudy pixel + the aerosol contaminated flag raised (no more AOD value)

PMAp Aerosol Optical Depth 2013081800000 2013081900000

PMAp-A/B/C = PMAp-D

- Tristar MetOp configuration → very good complementarity of PMAp A/B/C products
 - Remarkable global daily coverage : complementarity of the ground tracks (low loss due to sunglint)
 - Efficiency of the cloud decontamination, especially over ocean
 - Good consistency over dust events & Better identification of the inter-track residues

AOD @ 550 nm 20190227 platform M01 M02 M03 PMAp v2.10 retrieval

PMAp-A/B/C = PMAp-D

- Tristar MetOp configuration → very good complementarity of PMAp A/B/C products
 - Remarkable global daily coverage : complementarity of the ground tracks (low loss due to sunglint)
 - Efficiency of the cloud decontamination, especially over ocean
 - Good consistency over dust events & Better identification of the inter-track residues

1.00

0.75

PMAp-A/B Time Series

PMAp L3 (0.50x0.50) Aerosol Optical Depth 01-Feb-2015

0.82

Feb-May 2015 & Jun-Sep 2013

3-day averaging Binning 3x3

Version 2.2 (not yet released)

തന

0.21

0.41

0.61

Products from sensors currently in-orbit

EPS (EUMETSAT Polar System)

- 3 LEO satellites : Metop-A (2007), Metop-B (2013), Metop-C (2019)
- 3 instruments for aerosol retrieval GOME-2, AVHRR, IASI → hyper-instrument

Sentinel-3 (Copernicus)

- 2 LEO satellites : S3-A (2016) and S3-B (2018)
- 2 instruments for aerosol retrieval SLSTR, and OLCI

Actual Aerosol Mission: Sentinel-3 sensors

Sentinel-3 : Copernicus Mission

- Polar orbit at 10:00 ECT A in Feb. 2016, B in Apr. 2018
- 2 complementary instruments : OLCI and SLSTR

λ center Width

nm

nm

Aerosol Product from Sentinel-3 : SLSTR

• Sentinel-3 / SLSTR

- 5 spectral channels at 554, 659, and 868 nm, and 1.613, 2.255 um 4.5km resolution
- dual-view instruments nadir + 50° oblique (ATSR 1&2, AATSR)
- → Retrieval of AOD + model
- Scientific approach (Univ. Swansea; North. et al. 1999)
 - Historically applied to dual-view instruments ATSR 1&2, AATSR (ESA CCI_aerosol project)
 - Aerosol retrieval with a physical based surface model Iterative optimization of AOD, aerosol model & surface reflectance
 - Viewing constraints: multi-angular dual-view over land, nadir view over ocean
- Initial algorithm & Processor
 - Developed in the framework of S3 Mission Performance Centre (ESA contract)
 - Delivered to EUMETSAT (Oct. 2018), now fully in charge of maintenance, long-term evaluation, validation monitoring, evolution, deployment.
- On-going analyses / validation by EUMETSAT necessary evolutions before operational release:
 - Optimal adaptation based on up-to-date knowledge of SLSTR sensor specificities (e.g. geometry, radiometry calibration, etc..)
 - Note : parallel study with Finnish Met. Inst. to consolidate the SLSTR specificities and the expected product performance

Aerosol Product from Sentinel-3 : SLSTR

Aerosol Product from Sentinel-3 : SLSTR

Validation over Ocean

Validation over Land

Aerosol Product from Sentinel-3 : OLCI

- Sentinel-3 / OLCI
 - 21 bands from 400 to 1020nm for 1700 km nadir swath
 - → Retrieval of AOD
- OLCI : on-going demonstration of GRASP performance for OLCI
 - Simultaneous surface aerosol retrieval (Dubovik et al. 2014)

OLCI retrieval 1st June 2018

Aerosol Product from Sentinel-3 : OLCI

- OLCI : on-going demonstration of GRASP performance for OLCI
 - Simultaneous surface aerosol retrieval (Dubovik et al. 2014)

AOD(865) : OLCI-A

OLCI retrieval June 2018

1.0

Products from future sensors

EPS-SG (EPS Second Generation)

- 3 LEO satellites : Metop-SG on LEO at 9:30
- core instrument for aerosol : 3MI polarimeter
- 4 instruments for aerosol retrieval

3MI, Metimage, S5, IASI-NG \rightarrow hyper-instrument MAP

MTG (Meteosat Third Generation)

- 3 GEO satellites
- 1 instrument for aerosol retrieval FCI imager

Future Aerosol Mission: EPS-SG - 3MI

- 3MI = Multi-directional polarimeter
- Added-value information content for aerosol retrieval : 14 views, polarisation, and 12 bands from 410 to 2130nm

Based on simulated 3MI "ideal" dataset

- Simultaneous aerosol / surface retrieval with GRASP
- Approach according Dubovik et al., 2014 using all the information content
- Already tested for various sensors (PARASOL, MISR, MODIS, OLCI...)
- Under adaptation for an operational use in EUMETSAT (Near Real Time)

- Simultaneous aerosol / surface retrieval with GRASP
- Already tested for various sensors (PARASOL, MISR, MODIS, OLCI...)
- Under adaptation & evaluation for an operational use in EUMETSAT (Near Real Time)

Input AOD to generate AOD retrieved from 3MI simulated dataset

3MI simulated dataset

Aerosol Product from EPS-SG : toward MAP

- Multi-sensor Aerosol Product (follow-on PMAp)
- All sensors available on the same platform \rightarrow Hyper-instrument
 - Spectral range (from 270nm to 15 micron)
 - Spectral resolution
 - Spatial resolution (from 500m to 20km)
 - Polarisation and multi-directionality
- Core product based on 3MI
- Additional information content from METimage (sub-pixel information), Sentinel-5 (extension to UV), IASI-NG (TIR sounding)
- Improvement of the accuracy or more parameter retrieved :
 - Aerosol type
 - Aerosol height
 - AOD, SSA, refractive index, fine mode fraction
- Potentiality for PM2.5 estimation
- AOD over clouds

Products from future sensors

EPS-SG (EPS Second Generation)

- 3 LEO satellites : Metop-SG on LEO at 9:30
- · core instrument for aerosol : 3MI polarimeter
- 4 instruments for aerosol retrieval

3MI, Metimage, S5, IASI-NG \rightarrow hyper-instrument MAP

MTG (Meteosat Third Generation)

- 3 GEO satellites
- 1 instrument for aerosol retrieval FCI imager

Geostationary sensors – SEVIRI and FCI

MSG/SEVIRI :

- full disk every 15'
- 3 reflective solar bands
- 3km@nadir

MTG/FCI:

- full disk every 10'
- Rapid scan service (1/4th of full disk every 2.5')
- 8 reflective solar bands
- 1km@nadir

- Simultaneous aerosol / surface retrieval with AERUS-GEO
- Approach according Carrer et al., 2010; 2014
- Daily retrieval for MSG/SEVIRI available in ICARE
- Instantaneous retrieval (up to 96/day) under development
- Planned to be operationally implemented in EUMETSAT for MTG/FCI

Daily AOD at 0.64µm on March 30th, 2010

Capture of aerosol plume from Etna volcano on April 15th, 2010

(Ceamanos et al. 2018)

- Instantaneous retrieval with i-AERUS
 - good estimation of the AOD
 - reveal the diurnal cycle that may be large
 - → comparison to Aeronet and PARASOL (GRASP)
 - artefacts : identified limitation in backscattering geometry with the aerosol model (phase function)

Instantaneous retrieval with i-AERUS

• Various types of behaviour

AOD time series over Huelva in summer 2012

Oceanic surface

AOD time series over Frioul in summer 2012

- Instantaneous retrieval with i-AERUS
 - Mediterranean basin

Aerosol Product from MSG to MTG

- Instantaneous retrieval with i-AERUS
 - The i-AERUS product is already at a good level of maturity
 - Good assessment of the AOD and its diurnal variation
 - Clear improvements are identified for :
 - A better consideration of the aerosol type
 - A better consideration of the surface (especially for ocean)
 - MTG/FCI will provide more spectral information expected to contribute to a better constrain of the retrieval

Development of Operational Aerosol Products

- Several developments on-going
- EPS PMAp already operational improvements coming very soon
- Sentinel-3 : current development and operational product is expected to arrive soon
- Operational product under preparation for MTG based on development with MSG
 - Assessment of the diurnal cycle for AOD
- Follow-on MAP based on the core aerosol mission 3MI and other sensors
 - Robust and accurate aerosol charcterisation (AOD + other parameters)

Development of Operational Aerosol Products

ありがとう

