Retrieval of Atmospheric Aerosol Properties for geostationary and JAXA polar-orbital Satellite Imaging Sensors

<u>Mayumi Yoshida *</u>, Maki Kikuchi, Takashi M. Nagao, Hiroshi Murakami, Keiya Yumimoto, Taichu Tanaka

> *Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA)

> > 2019.07.24 ICAP@Tsukuba

Motivation

<u>Our final goal</u>

- produce synergistic global aerosol data set
 - using JAXA Polar-orbiting and geostationary satellites
 - Provided in near real time
- <u>This study</u>
- A <u>common aerosol</u>
 <u>retrieval algorithm</u> is developed
 - for various satellite imaging sensors
 - over both land and ocean

Current and Upcoming Aerosol Monitoring Satellite

Target sensors

Geostationary:

Himawari-8/AHI, GOES-R, Meteosat

Polar-orbiting:

Aqua, Terra/MODIS, GCOM-C/SGLI, GOSAT2/CAI2, EarthCARE/MSI

Sensor Characteristics

Himwari-8/AHI characteristics GCOM-C/SGLI characteristics

		IFOV		СН	λ(nm)	IFOV(m)	
CH	λ(nm)	(m)		VN1	380		
				VN2	412		
1	471	1000		VN3	443		
2	510			VN4	490		
3	639	500		VN5	530		
4	857	1000		VN6	565	250	
5	1610			VN7	673.5		
6	2257			VN8	673.5		
7	3885	2000	High temporal resolutions	VN9	763	High spatia	patial
8	6243			VN10	868.5		itions
9	6941			VN11	868.5		
10	7347			POL1	673.5	1000	
11	8592	2000		POL2	868.5		
12	9637	-		SW1	1050		
13	10407			SW2	1380		
14	11240			SW3	1630	250	
15	12381			SW4	2210	1000	
16	13311	1		TIR1	10800	250	
bane	ds in Vi	sible-I	rared	TIR2	12000	250	
min	utes in	terval		19 bands in Visible-Infrared			

10 minutes interval

ba

Yoshida et al., 2018

Aerosol model

external mixture (mixing ratio η)

*each aerosol model is based on Omar et al., 2005 and Sayer et al., 2012.

DEstimated parameter

- **Aerosol optical thickness**
- Fine ratio(η) •
- Single scattering albedo coarse: external volume mixing ratio (η_{dust}) fine : imaginary part of the refractive index $(m_i)_{5}$

L3 Algorithm

• Quality control (cloud screening) of AOT using difference in spatiotemporal variability between aerosol and cloud

• Minimize the missing data by using past and surrounding data

Kikuchi et al., 2018

Retrieval Results (Himawar-8/AHI)

16 JST 27 Apr. 2018 : continental air pollutant transported to Kyusyu

- The high and nearly continuous AOT over land and ocean are estimated
- High AOT caused by local noise or insufficient cloud screening was eliminated and interpolated smoothly in L3

Retrieval Results (Himawar-8/AHI)

2018-04-27 08:00 JST

Jeju Island (altitude:1950m) (blocks the aerosol)

> 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 Aerosol Optical Thickness

Aerosol transport are captured using frequent observation from AHI

Retrieval Results (GCOM-C/SGLI)

- The high AOT and AE (i.e. fine particles) are estimated corresponding to local air pollution report
- **Estimated AOT and AE are consistent** with SGLI polarization observation

Validation (AHI vs AERONET)

Validation (SGLI) : preliminary

RMSE

Estimated errors	Release threshold	Standard accuracy	Target accuracy
0.09 (ocean-other sat., monthly ave.)	0.10(monthly ave.)	0.10 (scene)	0.05 (scene)
0.15 (land-other sat., monthly ave.) 0.15(land-in-situ, scene)	0.15 (monthly ave.)	0.15 (scene)	0.10 (scene)

Release threshold is achieved

Data distribution

Himawari-8/AHI : JAXA Himawari Monitor

GCOM-C/SGLI: G-Portal

- distribute original (Level 1) and geophysical (Level 2) products
- Data can be achieved with simple user registration

JMA-JAXA Collaboration Framework

- JAXA provided JMA the Himawari aerosol algorithm (L2, L3)
- JMA implemented the algorithm to its operational system and started its experimental operation since December 2018

Next step: Utilization of aerosol transport model

aerosol data assimilation system collaborated with MRI and Kyusyu-Univ.

Preliminary Results

02UTC, 19 May 2016: Aerosol originated from wildfires

- Absorption ratio seems to be improved
- less noisy AOT and fine ratio
- AOT seems to well capture observed aerosol front
- Should be validated in future

Summary

- We developed <u>a common algorithm</u> to retrieve aerosol properties for various satellite sensors over land and ocean.
 - common aerosol models
 - common lookup tables
 - automatic selection of the optimum channels
- This method was applied to the Advanced Himawari Imager (AHI) /Himawari-8 and SGLI/GCOM-C.
- The retrieved AOT are generally **consistent with MODIS and AERONET** product.
- The retrieved product is distributed at **JAXA Himawari Monitor and G-portal.**
- <u>The utilization of aerosol properties forecasted by a global aerosol</u> <u>transport model</u> as a priori seems to improve the retrieval, but should be validated in future.

Thank you

BackUp

L2 Algorithm

- we derived the aerosol parameters (τ , η_f , and m_i) using an optimal estimation method (Rodgers 2000).
- The state vector of a set of aerosol parameters $\mathbf{x} = \{\tau, \eta_f, m_i\}$ was derived by minimizing the object function *J* (Eq. 6). It uses the measurement vector of a gas-corrected observed reflectance set $\mathbf{R} = \{\rho_i^{obs'}, i = 1, ..., N\}$ and simulated TOA reflectance $\mathbf{F}(\mathbf{x}) = \{\rho_i^{sim}, i = 1, ..., N\}$, where N is the channel number.

$$J = [\mathbf{R} - \mathbf{F}(\mathbf{x})]^T \mathbf{S}_e^{-1} [\mathbf{R} - \mathbf{F}(\mathbf{x})] + [\mathbf{x} - \mathbf{x}_a]^T \mathbf{S}_a^{-1} [\mathbf{x} - \mathbf{x}_a]$$
(6),
$$\mathbf{x}_a = \left\{ \tau_a, \eta_{f_a}, m_{i_a} \right\} : \text{the vector of a prior estimate of } \mathbf{x}$$

 S_e and S_a : the covariance matrices of R and x_a

$$\boldsymbol{S}_{\boldsymbol{e}} = \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_N^2 \end{bmatrix}, \quad (7)$$

• the uncertainty in TOA reflectancere $\sigma_i^{\bar{2}} = \sigma_s^2 + \sigma_n^2$,

 σ_s : the uncertainty in the TOA reflectance that results from $\Delta \rho_i^s$.

 σ_n :sensor noise (calculated from the signal-to-noise ratio)

- We assume Δρ^s_i to be some percentage of the surface reflectance (ρ^s_i) at each channel. The percentage is calculated at each pixel from the standard deviation of surface reflectance for 1 month at a channel whose ρ^{sim}_i is most sensitive to ρ^s_i (i.e., ρ^{sim}_i/ρ^s_i is the largest), when ρ^s_i at 470 nm is lower than ρ^s_i at 640 nm (i.e., the reflectance should be minimally influenced by heavy aerosol loading).
- the uncertainties of the three aerosol parameters $(\tau, \eta_f, \text{ and } m_i) \mathbf{S}_{\hat{\mathbf{x}}}$ were calculated using the law of error propagation, as follows:

$$\mathbf{S}_{\hat{\mathbf{X}}} = \left(\mathbf{A}^T \mathbf{S}_{\mathbf{e}}^{-1} \mathbf{A} \right)^{-1}, \qquad (10)$$

A: the Jacobian matrix

Surface reflectance

- adopt the second lowest reflectance (ρ_i^s) at 470 nm within one month
- In the case of $\rho_i^s@470nm > \rho_i^s@640nm$
 - ✓ influenced by residual aerosol contamination
 - ✓ adopt the modified Kaufman method (Fukuda et al. 2013)

$$\rho_i^s = \sum_{k=0}^4 a_k NDVI^k ,$$

NDVI =
$$\frac{R_{band4} - R_{band3}}{R_{band4} + R_{band3}}$$

• <u>The standard deviation of surface</u> <u>reflectance in one month</u> is used for the reference of the ρ_i^s estimation error for the AOT retrieval

Probability density distribution

- ✓ all AHI area
- ✓ 1 year data in 2016
- $\checkmark \ \rho_i^s@470nm < \rho_i^s@640nm$

(less influenced by heavy aerosol loading)

L3 algorithm

Described aerosol temporal/spatial variance in RMSD from the target

$$\sigma_{\Delta L,\Delta t} = \sqrt{\frac{1}{N} \sum_{1}^{N} \{ AOT(x', y', t') - AOT(x_0, y_0, t_0) \}^2}$$

AOT where ΔL , Δt away from the target

AOT at the target

Derived 2 types of AOT

1. AOTmerge

Estimated the target AOT by the optimum interpolation using the surrounding and the past one hour data, including the target AOT

AOTmerge is an AOT dataset with minimum missing retrieval

$$AOT_{merge}(x_o, y_0, t_0) = \sum_{i=0}^{n} \frac{w_i}{\sqrt{\frac{1}{\sigma_{merge}(x, y_i, t_i)^2}}} W_i = \frac{\overline{\sigma_{(x_i, y_i, t_i)^2}}}{\overline{\sigma_{merge}(x, y, t)^2}}$$

weighted according to AOT difference

2. AOTpure

weighted according to AOT difference induced from the distance and time difference

Estimated the target AOT by the optimum interpolation using the surrounding and the past one hour data, excluding the target AOT

 \rightarrow selected to be AOTpure if it was within the 99% of confidence interval^{*1}

 $^{*1}\mbox{defined}$ to be within 2.58σ assuming the error was in normal distribution

AOTpure is a highly accurate AOT dataset with minimum cloud contamination

$$AOT_{pure}(x_o, y_0, t_0) =$$

 $\begin{cases} AOT(x_o, y_0, t_0) & \text{if } AOT_{est}(x_o, y_0, t_0) - 2.58\sigma_{pure}(x_o, y_0, t_0) \le AOT(x_o, y_0, t_0) \le AOT_{est}(x_o, y_0, t_0) + 2.58\sigma_{pure}(x_o, y_0, t_0) \\ \text{estimated AOT} & 99\% \text{ confidence int.} \\ \text{observed AOT} & \text{else} & \text{estimated AOT} & 99\% \text{ confidence int.} \end{cases}$

Kikuchi, M., H. Murakami, K. Suzuki, T. M. Nagao, and A. Higurashi, 2018: Improved Hourly Estimates of Aerosol Optical Thickness using Spatiotemporal Variability Derived from Himawari-8 Geostationary Satellite, *IEEE Transactions on Geoscience and Remote Sensing*, 10.1109/TGRS.2018.2800060

L2 Evaluation with MODIS

June 2016

Ocean

Land

Retrieval Results (H8/AHI)

02UTC, 19 May 2016

Aerosol originated from wildfires at a proximity to Lake Baikal in Russia

- The high AOT and AE (fine particles) are estimated over land and ocean, corresponding to aerosol transport from the continent
- nearly continuous AOT over land and ocean

図4 2018年4月27日の済州島におけるライダの観測結果。横軸は時刻(日本時刻)、縦軸が高度(メートル)。赤い色ほど濃い大気浮遊物質が観測されている*4。