

UPDATES ON THE INTERNATIONAL COOPERATIVE FOR AEROSOL PREDICTION MULTI-MODEL ENSEMBLE (ICAP-MME) AND SURFACE PM VERIFICATIONS

Peng Xian, ^a Jeffrey Reid, ^a Rachel Braun,^b Melanie Ades,^c Nicole Asencio,^d Angela Benedetti, ^c Partha Bhattacharjee,^e Malcolm E. Brooks,^f Peter R. Colarco, ^g Arlindo Da Silva,^g Jonathan Guth,^d Oriol Jorba,^h Rostislav Kouznetsov,ⁱ Zak Kipling,^c Jeffrey McQueen,^f Sofiev Mikhail,ⁱ Carlos Perez Carcia-Pando,^h Yaswant Pradhan,^f Taichu Tanaka,^j Keiya Yumimoto,^{j,k} and Arunas Kuciauskas^a

11th ICAP workshop, JMA, Tsukuba, Japan. July 22-24, 2019

^aMarine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA
^bChemical and Environmental Engineering Department, University of Arizona, AZ, USA.
^cMétéo-France, UMR3589, Toulouse, France
^dEuropean Centre for Medium-Range Weather Forecasts, Reading, UK
^eNOAA/NCEP, College Park, MD, USA
^fMet Office, Exeter, UK
^gNASA Goddard Space Flight Center, Greenbelt, MD, USA
^hEarth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
ⁱAtmospheric composition unit, Finnish Meteorological Institute, Helsinki, Finland
ⁱAtmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba Japan
^kResearch Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan

CURRENT ICAP OPERATIONS - as of June 2019

Organization	BSC	Copernicus/ ECMWF	JMA	Meteo France	NASA	US Navy	NOAA	FMI	UKMO
Model	MONARCH	CAMS	MASINGAR	MOCAGE	GEOS-5	NAAPS	NGAC/FV3GFS- Chem	SILAM	MetUM
Status	QO	O-24 hrs	QO	0	QO	0	0	0	0
Meteorology	Inline NMMB	Inline IFS	inline AGCM	Offline ARPEGE	Inline GEOS-5	Offline NAVGEM	Inline GFS/FV3GFS	Offline IFS	Inline UM
Resolution	1.4x1 (0.7x0.5)	0.4x0.4	0.375x0.375	1x1	0.125x0.15	0.33x0.33	1x1/0.25	0.5x0.5	0.35x0.23
levels	24 <mark>(48</mark>)	60 -137	40	47	72	60	64	60	70
DA	LETKFP	4DVar	2DVar LETKF ^p	2018	2DVar +LDE	2DVar 3DVar, EnKF ^p	NA	3Dvar ^p , 4Dvar ^p , EnKF ^p	4DVar
Assimilated Obs	DAQ MODIS+DB	DAQ MODIS DT+DB PMAp	MODIS L3, AHI ^p , CALIOP ^p	NA	Neural Net MODIS	DAQ MODIS, AVHRR ^p VIIRS ^p CALIOP ^p	NA	NA	MODIS Dust AOT
Species	Dust, Sea Salt BC (POA,SOA)bio Sulfate (POA, SOA)anthro	BC, OC Dust, Sea Salt Sufate, Nitrate, Ammonium	BC, OC Dust Sea Salt Sulfate	BC, OC Dust Sea Salt Sulfate, Nitrate, Ammonium	BC, OC Dust Sea Salt Sulfate Nitrate	Anthro+bio B. B. Smoke Dust Sea Salt	Dust BC, OC Sea Salt Sulfate	BC, Dust, OC, Sea Salt, Sulfate, Nitrate, B.B. Smoke	Dust
Size Bins	8 (dust, salt) bulk for others	3 (dust, salt), bulk for others	10 (dust, salt), bulk for others	6	5 (dust, SS), 2(BC, OC), <mark>3(NI*)</mark> , bulk sulfate	bulk	5 (dust, SS), 2(BC, OC), bulk sulfate	4 (dust), 5 (SS), 3 (B.B. Smoke), 2 (sulfate), bulk for others	2
Antho. & Biogenic Emission	HTAPv2.1 (anthro), MEGANv2.04 (biogenic)	MACCity (anthro), MEGAN (biogenic)	MACCity	MACCity (anthro.) MEGAN-MACC (biogenic)	EDGAR V4.1/4.2, AeroCom Phase II, GEIA	MACCity, BOND, POET	EDGAR V4.1+CEDS AeroCom Phase II, GEIA	MACCity, STEAM, MEGANE, HTAP(Coarse PM)	NA
Bio. Burn. Emissions	GFAS	GFAS	GFAS	GFAS	QFED	FLAMBE	GBBEPxV2	GFAS, IS4FIRES	NA

> The ICAP-MME is run daily w/ 1x1 deg res at 00Z for 6 hrly fcasts out to 120 hrs w/ a 1-day latency.

Modal AOT (550nm) and dust AOT (550nm) data in NetCDF is available publically.

Green means proposed. Red means changes occurred last year. "p" means prototype.

ICAP Model Data Flow since last meeting

U.S.NAVAL RESEARCH

Key results from the recent ICAP paper (Xian et al., 2019) Ranking of ICAP-MME in terms of total AOD RMSE for 72-hr fcst over 2012-2017

Yonsei_University -	465	513	567	569	537	493	╞
Mezaira -	203	526	390	451	764	470	┝
Singapore -	368	279	322	606	467	392	ŀ
Rio_Branco -	489	492	343	432	234	412	ŀ
Ragged_Point -	394	417	352	429	538	341	F
Palma_de_Mallorca -	452	722	493	737	731	694	F
Monterey -	151	374	343	478	137	118	Ļ
Moldova -	570	467	369	313	400	464	ŀ
Minsk -	372	406	420	453	353	307	Ļ
Kanpur -	543	617	531	644	700	512	ŀ
llorin -	508	253	309	563	503	311	Ļ
GSFC -	625	592	575	590	646	530	Ļ
Gandhi_College -	689	392	403	382	307	185	F
Chiang_Mai_Met_Sta -	509	438	577	628	280	413	Ļ
Chapais -	233	239	326	390	295	108	F
Cart_Site -	754	449	568	594	538	561	Ļ
Capo_Verde -	490	422	397	413	402	163	Ļ
Beijing -	421	330	510	516	476	274	F
Banizoumbou -	698	812	493	573	783	500	Ļ
Amsterdam_Island -	0	47	105	137	241	265	Ļ
Alta_Floresta -	300	310	332	355	382	119	Ļ
	2012	2013	2014	2015	2016	2017	1

Presentation Title | 4

U.S. NAVAL RESEARCH LABORATORY Ranking of all models in terms of total AOD RMSE for 72-hr fcst over 2012-2017

- > ICAP-MME performance is stable and reliable over the years compared to individual models.
- > AOD RMSE of the ICAP-MME is not always the lowest for a given species, site or year, but it is relatively low and stable.
- Consensus MME wins in the long run because of its averaging of independent models.

Evolution of ICAP-MME performance over 2012-2017

	0.34	0.41	0.30	0.32	0.30	1	_ 0.14	0.12	0.14	0.12	0.13	0.12
Yonsel_University _ 0.12	2 0.11	0.11	0.11	0.12	0.13	Number inside	0.42	0.25	0.22	0.28	0.22	0.22
	0.30	0.37	0.56	0.19	0.18		0.13	0.12	0.14	0.16	0.11	0.10
	3 0.07	0.10	0.17	0.16	0.21	each block is	_ 0.06	0.04	0.06	0.07	0.07	0.06
Rio_Branco - on	3 0.03	0.03	0.03	0.03	0.04	vearly mean	0.14	0.12	0.13	0.16	0.12	0.16
Ragged_Point -	3 0.06	0.07	0.06	0.06	0.06		0.10	0.05	0.09	0.07	0.07	0.07
Palma_de_Mailorca = 0.0	3 0.04	0.03	0.03	0.23	0.08	- modal AOD.	0.04	0.03	0.03	0.04	0.05	0.05
Monterey - 0.1	0.11	0.11	0.08	0.10	0.09	Ī.	0.07	0.06	0.06	0.05	0.06	0.07
Minde 0.1	0.10	0.10	0.10	0.10	0.08	Ī	0.06	0.06	0.06	0.05	0.05	0.06
Winsk - 0.3	0.44	0.42	0.39	0.42	0.43		0.30	0.22	0.21	0.23	0.22	0.22
Kanpur – ota	7 0.27	0.30	0.23	0.30	0.31		_ 0.48	0.27	0.35	0.44	0.45	0.46
	0.08	0.09	0.09	0.07	0.07		_ 0.05	0.04	0.04	0.04	0.04	0.04
GSFC - 0.35	0.42	0.34	0.44	0.38	0.38		0.25	0.19	0.24	0.20	0.20	0.26
Chiene Mai Mat Sta - 0.36	6 0.50	0.35	0.31	0.47	0.24		0.11	0.12	0.10	0.10	0.13	0.10
	7 0.07	0.06	0.06	0.06	0.03		0.05	0.04	0.03	0.04	0.03	0.03
	3 0.06	0.06	0.07	0.05	0.08		_ 0.05	0.04	0.05	0.04	0.03	0.05
	6 0.05	0.06	0.06	0.07	0.11		0.29	0.23	0.25	0.31	0.29	0.33
Capo_verue -	0.41	0.48	0.45	0.36	0.33		0.20	0.18	0.19	0.16	0.16	0.15
Banizoumbou – 0.1	0.09	0.10	0.11	0.12	0.11	_	_ 0.43	0.32	0.27	0.44	0.44	0.38
Amsterdam Island - Na	N NaN	0.05	0.03	0.01	0.02		_ NaN	NaN	0.10	0.08	0.05	0.06
	0.08	0.12	0.20	0.11	0.40		0.07	0.05	0.07	0.08	0.06	0.12
	1 1	1	1	1		L.			1	1		
2	012 2013	2014	2015	2016	2017		2012	2013	2014	2015	2016	2017
Fine-mode AOD RMSE						Coarse-mode RM	SF	2 0 06 0 10 0			34 0 38 0 43	0.46.0.50
	0.02 0.06 0.10 0	0.14 0.18 0.22	2 0.26 0.30 0	.34 0.38 0.42	2 0.46 0.50		0.0	2 0.00 0.10 0	0.14 0.16 0.22	. 0.20 0.30 0.	04 0.30 0.42	0.40 0.50

- > A general tendency for model improvements in fine-mode AOD, especially over Asia for 2012-2017.
- > No significant improvement in coarse-mode AOD is found overall for this time period.

Model coarse-mode AOD --- a snapshot for 20170511

U.S.NAVAL

RESEARCH

Model Surface PM10 --- a snapshot for 20170511

U.S. NAVAI

ABORATOR`

Large diversity among models, including the AOD-DA models, over dust influenced regions and sea salt production regions.

DA models have similar coarse-AOD, e.g., over ocean, but their PM10 can be a few factors/order of magnitude different, due to possible differences in aerosol optical properties, vertical distributions, hygroscopic growths, meteorology etc.

Model fine-mode AOD---- a snapshot for 20170511

U.S.NAVAL

RESEARCH

Model surface PM2.5 ---- a snapshot for 20170511

U.S.NAVAL

RESEARCH

There are some differences among models in fine-mode AOD, but there are larger differences in PM2.5.

Optical properties, vertical distributions, chemistry, hygroscopic growths, size-bins (fine dust, sea salt), meteorology all matter.

Surface PM Measurements

openAQ.org

~34.8 million surface particulate matter (PM) measurements for 2016-2017

348	325084x10 <u>table</u>									
	1	2	3	4	5	6	7	8	9	10
	location	city	country	utc	parameter	value	unit	latitude	longitude	attribution
1	US Diplomatic Post: Jakarta South	Jakarta	ID	"2016-01-03T18:00:00.000Z"	pm25	6	i1 µg/m³	-6.2366	106.7933	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]
2	US Diplomatic Post: Jakarta Central	Jakarta	ID	"2016-01-03T18:00:00.000Z"	pm25	4	5 µg/m³	-6.1824	106.8341	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]
3	US Diplomatic Post: Ulaanbaatar	Ulaanbaatar	MN	"2016-01-03T18:00:00.000Z"	pm25	6	4 µg/m³	47.9284	106.9302	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]
4	US Diplomatic Post: Hanoi	Hanoi	VN	"2016-01-03T18:00:00.000Z"	pm25	-99	9 µg/m³	21.0218	105.8190	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]
5	US Diplomatic Post: Hyderabad	Hyderabad	IN	"2016-01-03T18:30:00.000Z"	pm25	6	i1 µg/m³	17.4435	78.4749	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]
6	US Diplomatic Post: Chennai	Chennai	IN	"2016-01-03T18:30:00.000Z"	pm25	2	8 µg/m³	13.0524	80.2519	[{"name":"EPA AirNow DOS","url":"http://airnow.gov/index.cfm?action=airnow.global_summary"}]

PM data were processed to remove errors and then aggregated into 1x1 degree "grids"

Surface PM Measurements sites

Preliminary verification result on PM2.5, June 2016-May 2017 Beijing

0.0

AERONET

m1 m2 m3 m4 m5 m6 m1 ME

> ICAP-MME still performs the best compared to individual models as for PM2.5.

U.S.NAVAI

RESEARCH

- > ICAP-MME still performs the best compared to individual models.
- > DA models don't necessarily perform better than non-DA models.
- Consistent large low biases among all models for winter time.

U.S.NAVAL

RESEARCH LABORATORY

Preliminary verification result on PM2.5, June 2016-May 2017 London

U.S.NAVAL RESEARCH

LABORATORY

Longitude

Annual cycle of PM2.5

⇒ | 16

Annual cycle of PM2.5

U.S.NAVAL RESEARCH LABORATORY

Preliminary verification result on PM10: receptor site of African Dust in NNE coast of S. America

> Models capture the annual variations and magnitude of PM10 to various extent.

> ICAP MME consensus ranks the 1st.

U.S. NAVAL RESEARCH LABORATORY

Preliminary verification result on PMs Delhi, India : mixed dust and pollution

PM10 ⁴⁵⁰ ⁴⁵⁰ ⁴⁰⁰ ⁴⁰

Delhi - Day0 - PM10 - F

> Consistent low bias for winter pollutions.

Seemingly too much fine dust in some model.

U.S.NAVAL RESEARCH LABORATORY

Challenges for models in surface PM simulation

Models put too much biomass-burning smoke into the boundary layer and surface.

Challenges in simulating PBL processes and PBL height, inversion, topography effects. Also very possible of high biased biomass-burning emission and incorrect emission height.

Lack of anthropogenic emissions in emission inventories.

Rankings of all models in terms of PM2.5 and PM10 RMSE

U.S. NAVAL

RESEARCH

MODELS										ra	nki	ing	w.	r.t.	RN	1SE	of	ΡN	12.5	5 3-	day	y fo	rec	st									AVE	Ē	
CAMS		4	9	8	6	6	1	2	8	7	8	9	6	8	9	8	3	7	2	8	7	2	8	8	8	1	7	4	8	8	8	1	6.1		
GEOS5		7	7	2	8	3	6	6	4	5	9	4	8	7	8	7	9	5	4	7	8	9	5	4	7	6	8	3	7	4	3	5	6.0	Green is better	
MASINGAR		8	8	1	4	2	3	5	9	4	4	7	9	9	5	4	8	9	8	5	4	4	4	3	6	7	5	7	4	9	9	7	5.8		
MOCAGE		9	5	9	5	9	5	4	7	9	1	8	1	1	6	5	4	8	7	9	9	8	6	6	4	2	6	9	6	2	6	8	5.9		
MONARCH		3	3	3	3	8	9	9	5	8	7	1	7	6	7	2	6	6	9	6	2	3	9	9	9	8	9	8	9	5	5	9	6.2		
NAAPS		1	4	7	9	1	7	7	1	1	2	2	3	3	3	9	2	1	6	1	6	7	7	1	1	3	3	5	3	7	7	4	4.0		
SILAM		6	6	5	7	7	8	8	6	6	5	6	2	4	1	6	1	4	3	4	1	1	2	7	5	9	4	6	5	3	4	6	4.8		
ICAP_Mean		2	1	6	2	4	4	3	2	3	6	3	4	2	2	1	5	3	5	2	3	5	3	5	3	4	2	1	2	6	2	2	3.2		
ICAP_Median		5	2	4	1	5	2	1	3	2	3	5	5	5	4	3	7	2	1	3	5	6	1	2	2	5	1	2	1	1	1	3	3.0	sites of interest	
MODELS					r	ank	ing	w	.r.t.	RI	MS	Εo	f P	M1	.0 a	na	lys	is										AV	Έ				S C	5 5	5
CAMS	6	4	5	2	5	9	3	3	4	5	6	5	9	9	7	1	4	2	1	1	5	9	1	4	9	7	4	4.	<mark>8</mark> र्ट्	~	1.1		De C	· PM10	
GEOS5	2	8	2	7	9	8	4	9	8	2	2 8	3	2	8	9	9	5	8	6	8	8	6	3	8	3	9	6	6.	3	ţ	1	1	V TA	Small Ro -	c
MASINGAR	9	3	4	1	7	6	9	4	2	7	' S	9	7	6	1	7	6	6	7	7	7	5	7	6	6	1	8	5.	7		-	-		and the second second	
MOCAGE	8	6	9	4	8	3	8	8	9	9) 2	2	8	5	4	5	7	9	9	9	6	4	8	3	7	4	9	6.	6				ly my		
MONARCH	3	7	8	9	6	7	6	7	1	8	3 5	5 4	4	4	3	8	9	5	8	6	3	1	9	7	4	3	1	5.	5				~ ک		
NAAPS	1	9	1	6	2	1	1	5	7	1	. 7	7	1	7	8	2	2	4	4	3	1	8	2	9	8	8	2	4.	2	•				[]]. M.	*
SILAM	7	5	7	8	4	4	7	6	6	3	: 1	L	6	1	5	4	8	7	2	2	9	2	6	5	5	6	7	5.	1				کر ا		¥
ICAP_Mean	4	2	3	5	1	5	2	1	3	4	. з	3	3	2	6	3	1	1	3	4	2	7	4	1	1	5	3	3.	0				4.	Presentation Title 21	
CAP_Median	5	1	6	3	3	2	5	2	5	6	; 4	1 !	5	3	2	6	3	3	5	5	4	3	5	2	2	2	5	3.	7						

ICAP supporting 3 year NRL African dust project over the Greater Caribbean

Potential ICAP support for the Caribbean communities

- Provides skillful depictions and predictions of African dust transport over the tropical Atlantic basin
- Potentially valuable resource for air quality & fire hazard prediction throughout Caribbean
- Recently requested by Hurricane Research Division (HRD), Miami and WFOs throughout

courtesy: Karyampudi and Carlson (1988)

ICAP applications for CY 2019:

- Saharan Air Layer/African dust forecasting at NWS, San Juan, PR
 ongoing training webinars to NWS WFOs in FL and Caribbean
- WMO Pan American Sand and dust storm Warning Advisory and assessment system
 Caribbean node
- GOES-16, JPSS and GEONETCast Americas Satellite Workshop & training, Barbados, July 2019
- NASA-ROSES project : African dust, health and air quality

Summary

- ICAP now includes 8 multi specie and 1 dust only models.
- ICAP-MME AOD update paper published on QJRMS, 2019. Key results: https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3497
 - ICAP-MME performance is stable and reliable over the years compared to individual models. Consensus MME wins in the long run because of its averaging of independent models.
 - ICAP-MME performance in terms of modal AOD RMSEs of the 21 regionally representative sites over 2012-2017 suggests a general tendency for model improvements in fine-mode AOD, especially over Asia. No significant improvement in coarse-mode AOD is found overall for this time period.
- Preliminary verification on PM2.5 and PM10 shows
 - More challenges in surface PM than column AOD simulations for the ICAP models.
 - Compared to AOD, PM2.5 and PM10 have larger divergence among the models, including the AOD-DA models.
 - Regarding PM2.5 and PM10, ICAP-MME is still the top performer among all models.

Extra slide : PM2.5 RMSE of models at analysis time

PM10 RMSE of models at analysis time

PM data availability from models for the study period

								Time	5							
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
CAME																
CAIVIS																
ļ		(Data As	similation	Analysis)												
Į	(Included)															
GEOS5		(Included)														
Į			(Included)													
				(Included)												
MASINGAD			(Analysis)													
MASINGAK	(Included)															
MOCAGE			(Analysis)													
MONARCH	(Included)															
ļ	(Included)															
NAADS		(Included)														
INAAFJ			(Included)													
<u> </u>				(Included)												
SILAM	(Included)															