

Aerosol Remote Sensing in the Context of Operational Missions

<u>Bertrand Fougnie</u>¹ on behalf of the *Cloud & Aerosol group* Julien Chimot¹, Soheila Jafariserajehlou^{1,2}, Thierry Marbach¹, Margarita Vazquez-Navarro¹, Andriy Holdak^{1,3}, Sruthy Sasi^{1,2}, Edouard Martins^{1,2}, Henda Guermazi^{1,2}, Ruediger Lang¹, Bojan Bojkov¹

EUMETSAT 1) EUMETSAT Remote Sensing & Products / *Cloud & Aerosol* (RSP/CLA) 2) Rhea Systems GmbH 3) Vision Space Technologies

October 2022

Summary

- Aerosol & users in the operational context
- Development of aerosol processor in EUMETSAT
- Operational processors
 - 01: EPS/PMAp
 - 02: S3/OSSAR-CS3
- Processor under preparation & development
 - P1: Polarimetry with EPS-SG/3MI
 - P2: Synergy with EPS-SG/MAP
 - P3: Polarimetry with CO2M/MAP
 - P4: Geostationary orbit
- Strategy wrt Users & Assimilation needs
- Conclusion

Operational Aerosol processors in EUMETSAT

- "Operational product" ?
 - Dissemination to operational users
 - Near real time delivery (<3:00h from sensing time)
 - Robustness (availability)
 - Documented performance (validation report)
 - Stability of the performance
 - Monitoring of the performance
 - In general continuous improvements
 - Product tailored to user needs
- Scientific developments are needed to support these definitions and improvements
 - Some adaptation from the scientific development are needed to convert into an operational processor
 - Tailor the products to user needs (core parameters, performance, additional information...)

EUMETSAT Missions – *Current and Future*

EUM/RSP/VWG

Aerosol algorithm/processor in EUMETSAT

Operational products:

- <u>O1: EPS/PMAp</u> : Synergistic combination of instruments
- O2: S3/SLSTR : Dual-view radiometer

Under preparation:

- P1: EPS-SG/3MI: Multidirectional polarimeter
- P2: EPS-SG/MAP: Synergistic use of 4 instruments (inc. 3MI)
- P3: CO2M/MAP: Multiview polarimeter
- P4: S3/SYN and S3-NG: Synergy with Multispectral Pushbroom
- P5: MTG/FCI : Geostationary imagers

Polarisation

 \rightarrow mono-view, Q/I fraction in 8 bands (414-799nm)

- ightarrow 14 views, I/Q/U in 9 bands (410-2200nm)
- ightarrow same as 3MI
- \rightarrow 45 views, I/Q/U in 7 bands (410–865nm)

Strategy for the development of Aerosol product

www.eumetsat.int

Toward a standardisation of methodology and harmonisation of processes

- Information Content Analysis (ICA) for each sensor/system
 - Should identify what can be realistically retrieved The larger the IC, the large the number of parameter to be retrieve AND/OR the better the performance
- Simultaneous Surface Aerosol Retrieval (SSAR)
 - Must be adapted & tuned considering the ICA
- Tailor the products to user needs may impact the algorithm
- Physical description
 - Adopt a common aerosol model definition, vertical distribution definition...
- RTM
- Validation: adopt a consistent 6-step approach
 - Qualitative analysis
 - Matchups with ground measurements (e.g. Aeronet...)
 - Inter-satellite/sensor comparison
 - Consistency with aerosol sources
 - Comparison with alternative algorithms
 - Model-based comparison

The different tastes of our validation

www.eumetsat.int

Operational NRT Aerosol processors

O1 – EPS/PMAp: Polar Multi-sensor Aerosol Product

PMAp: Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI

- EPS EUMETSAT Polar System: 3 Polar platforms, orbit at 09:30 ECT
- 3 redundant platform/instrument \rightarrow 25 y. of operation
- Metop-A/2006-2021, Metop-B/2012, Metop-C/2018
- 3 instruments for aerosol: GOME-2, AVHRR, IASI

Merging hyper-spectral and high spatial information from GOME-2, AVHRR and IASI

Instruments for L1 data	Spatial resolution	Spectral range	
GOME PMD	Metop B and C: 10×40 km ² Metop A: 5×40 km ²	311 nm – 803 nm (15 band)	
AVHRR	1.08 × 1.08 km ²	580 nm – 12500 nm (5 band)	
IA3I	12 km (circular)	3700 nm – 15500 nm (resolution 0.5 cm ⁻¹)	

O1 – EPS/PMAp: Operational Synergistic Aerosol product

www.eumetsat.int

PMAp: Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI

- EPS : Polar orbit at 09:30 ECT A/2006, B/2012, C/2018
- 3 redundant platform/instrument \rightarrow 25 y. of operation
- GOME-2, AVHRR, IASI

- Product = AOD @550nm +
 - aerosol type classification
- Fully operational product since Oct'14 (over ocean)
- Version 2 since Feb'17 (ocean & land)
- Version 2.2.4 released May'21
- Version 2.2.5 released soon

detailed in Grzegorski et al., Remote Sensing, 2022

01 – EPS/PMAp: Algorithm based on synergy

www.eumetsat.int

PMAp Synergy retrieval algorithm design - Version 2.2

O1 – EPS/PMAp: Consistency with other products

EUM/RSP/VWG/22/1311801, v1 Draft, 10 June 2022

O1 – EPS/PMAp: Validation and Performance

- Performance compared to Aeronet, VIIRS and MODIS
 - "weighted bins" analysis

Aug'19

OI – EPS/PMAp: Climate Data Record

- Context of the Copernicus Climate Change Service (C3S)
- Strategy = use the up-to-date version of PMAp to reprocess a consistent archive
 - PMAp Version 2.2
 - Create a well-calibrated, homogeneous, consistent, long-term AOD dataset
 - Also instrumental to support a more extensive validation of the PMAp product

Satellite	Coverage	Reprocessing period
Metop-A	global	01/07/2007 – 29/01/2018
Metop-B	global	20/02/2013 – 31/08/2019

\rightarrow Can be used for extensive reanalysis

Jafariserajehlou and Fougnie, 2021

01 – EPS/PMAp: Last revision

To address the known limitations of PMAp 2.2.4:

- Update of degradation correction to account for the aging 1) of GOME-2 sensor:
- Calculation of Radiometric adjustment for Metop-C; 1)

O1 – EPS/PMAp: Polar Multi-sensor Aerosol Product

- PMAp v2.2:
 - operational since 6th May 2021: (<u>https://www.eumetsat.int/new-version-metop-pmap-product-released-soon</u>)
 - significant improvements compared to the previous operational version in terms of aerosol loading, spatial and temporal distribution, especially over land.
 - known limitations of PMAp 2.2.4 being addressed in PMAp 2.2.5.
 - High consistency between the two Metops (-B & -C) is achieved in PMAp 2.2.5
 - Now published in Grzegorski et al., Multi-sensor Retrieval of Aerosol Optical Properties for Near-Real-Time Applications Using the Metop Series of Satellites: Concept, Detailed Description and First Validation, *Remote Sensing*, 2022
 - Unless request from users to improve PMAp (test over Land needed), the development will mostly be done on the follow-on synergistic product EPS-SG/MAP

O2 – OSSAR-CS3 from Sentinel-3/SLSTR

- OSSAR-CS3 = Optimised Simultaneous Surface Aerosol Retrieval from Copernicus Sentinel-3
- First <u>operational</u> aerosol product from Sentinel-3
 - → SLSTR instrument: spectral combined with dual-view
 - Nadir view with spectral VIS to SWIR
 - A second oblique view (rear) with the same spectral bands

Spectral acquisition

O2 – OSSAR-CS3 from Sentinel-3/SLSTR

Joint surface & aerosol retrieval weighted by the actual Information Content (ICA)

AFRI spectral index

- Level-1 radiance correction (e.g. vicarious calibration, drift, inter-band, dual-view)
- Internal cloud & aerosol mask (Land since coll. 2, ocean since coll. 3)
- <u>Ocean:</u>
 - Dual-view retrieval
 - Ocean surface pre-computed (not retrieved)
 - Wind speed from forecast (ECMWF), whitecaps (Koepke et al.), ocean colour with Chl=0.1 mg/m3
- Land:
 - Dynamic ICA per L2 pixel = f(dual scattering angle, land cover type)
 - Land surface reflectance 1st guess: spectral model built upon AFRI vegetation index & Red-SWIR spectral matching
 - Weighted joint aerosol-land surface: high weight for unfavourable dual-view geometry & vegetation
- Aerosol types: 35 mixtures interpolated between dust, sea salt, weakly & strongly absorbing (Kinne et al., 2006)
- Log(AOD) retrieved
- A posteriori diagnostic Quality Indicators: AOD spatial uniformity, spectral residuals (sediments, melted ice, missed polar stratospheric clouds), bright deserts
- History of a recent development
 - Version 1.0 not released: Initial version from ESA/University Swansea
 - Version 2.0 EUMETSAT development disseminated since August 2020
 - Version 3.0 dissemination since October 2021

O2 – OSSAR-CS3: validation

Sentinel-3 A+B SLSTR - AOD(550 nm) Land & Ocean 🤄 EUMETSAT

O2 – OSSAR-CS3: comparison with other products

O2 – OSSAR-CS3: comparison with other products

O2 – OSSAR-CS3 improvement over oceans & waters

www.eumetsat.int

OSSAR-CS3 - NRT S3 Coll 3.0 New

EUM/RSP/VWG/22/1311801, v1 Draft, 10 June 2022

www.eumetsat.int

Under Development Aerosol Processors

P1 - EPS-SG/3MI in a nutshell

- Multi-angle polarimeter
- The instrument relies on a very simple concept
 - 2 wide field-of-view optics (VISNIR + SWIR)
 - 2D detectors at focal planes (CCD for VISNIR, and CMOS for SWIR)
 - 1 filter wheel inc. polarizer (12 bands from 410 to 2130nm with I/Q/U)

See APOLO talk by Thierry Marbach

detailed in Fougnie et al., JOSRT, 2018

 \rightarrow 14 views, I/Q/U in 9 bands (410/2200nm)

P1- EPS-SG/3MI: polarimetry

- Large information content:
 - 14 views : from -50° backward to 50° forward
 - 12 spectral bands: from 410 to 2130nm
 - 3 polarisations providing I, Q, and U (exc. absorption bands)
 - \rightarrow Potentially 420 information per pixel to feed the retrieval

- The aerosol retrieval is based on an optimal simultaneous retrieval of the surface and aerosol
 - **GRASP** was adopted as the best solver for this specific information content
 - To be configured to an Operational processor (product available 1:30 after sensing)
 - The simultaneous retrieval will be adjusted to optimise the performance of the aerosol retrieval
 - Multi-view polarimetry potentially allows distinction of fine & coarse particles + characterization of their properties:
 - aerosol optical thickness, angstrom coefficient, fine/coarse fraction, single scattering albedo, absorbing aerosol optical thickness, refractive indexes, sphericity fraction, aerosol height...

P1 – EPS–SG/3MI: polarimetry

The ability to measure a part of the phase function

- Aerosol model (type f/c, microphysics, size distribution, shape, absorption...)
- Aerosol load (optical thickness)
- But it is unrealistic to retrieve all of them and everywhere
 - Geometry of acquisition and/or the surface type strongly influence the performance of the retrieval
 - Wrt our user needs, the retrieval will be optimised to derive properly for AOD and Aerosol model
 - Other parameters will be retrieved when/if possible

detailed in Fougnie et al., JQSRT, 2020

27

www.eumetsat.int

Scattering Angle Range Distribution for 3MI

P2 - EPS-SG Multi-sensor Aerosol Product MAP

Next generation of synergy aerosol product from EPS-SG: MAP

(follow-on EPS/PMAp)

- Retrieval of aerosol properties using a hyper-instrument synergy of instruments on-board the platform
 - <u>3MI</u> Multi-View, Polarisation, -Spectral Imager;
 - <u>UVNS</u> UV/Near- and Shortwave Infrared Sentinel-5 spectrometer (Sentinel 5);
 - <u>METimage</u> Visible Infrared Imager (VII);
 - <u>IASI-NG</u> Infrared Atmospheric Sounding Interferometer.

Sensor	Spatial resolution	Swath	Spectral type	Spectral bands	Spectral range	Additional capabilities
3MI	4x4 km²	2200 x	VIS/NIR/SWIR	12 bands	410 to 2130nm	14 views
		2200 km²				Polarisation (I/Q/U)
METimage	0.5x0.5 km²	2670 km	VIS/NIR/SWIR	11 bands	443 to 2250nm	
			TIR	9 bands	3.3 to 13.3µm	
S5-UVN	7.5x7.5 km²	2670 km	UV/VIS/NIR/SWIR	1669 bands	270-300nm	
	50x50 km² (<300nm)			(0.25nm in SWIR	300-370-500nm	
				to 1nm in UV)	685-710nm	
					755-773nm	
					1590-1675nm	
					2305-2385nm	
IASI-NG	12km spot	2000 km	TIR	16921 bands	645 to 2760cm-1	
				(0.25cm-1)		

Instrument	Main use	
3MI	Retrieval of aerosol properties (> 10 parameters)	
VII	Cloud, scene homogeneity, volcanic ash, thick dust	
S5	Retrieval of aerosol properties, Clouds, scene homogeneity	
IASI-NG	Volcanic ash, desert dust, aerosol height	

- Baseline for the design of MAP version 1:
 - PMAP synergy adapted to EPS-SG: colocation, cloud masking, pre-classification, ash/dust detection...
 - AOD and model retrieval from 3MI/GRASP
- Extension to other parameters: improve ash & dust, aerosol height, SSA, PM25...

Revisions could consider feeding GRASP directly with some inputs from UVNS/Metimage/IASI-NG – to be developed EUM/RSP/VWG/22/1311801, v1 Draft, 10 June 2022

P2 – The Aerosol Observatory from EPS–SG sensors

• MAP Multi-Angle Polarimeter in VIS-NIR

P3 – CO2M project

- Aerosol correction is needed to reach the performance for CO2 & CH4
- Optimisation for atmospheric correction
- Challenge: aerosol contribution is needed in SWIR
- Similarly as for 3MI, GRASP to be optimised for MAP
- Influence of the geometry
- Synergy with CLIM and CO2IS

- S3/SYN with SLSTR and OLCI
 - Current OSSAR-CS3 based on SLSTR to be "extended" with new information content from the imager OLCI (21 bands between 410 and 1020nm)
 - At least:
 - "Blue" part of the spectrum to improve AOD retrieval over surface
 - "02 bands" to support the assessment of Aerosol Layer Height
 - Should rely on an optimised L1C/SYN product
- S3-NG
 - Currently under definition
 - Feedback from S3 + additional user needs are being considered for the MRD
 - The development will initiated accordingly

P5 – On-going development with GEO (MTG)

- GEO for a given lat/lon:
 - Very high number of observation per day
 - fix viewing geometry, but wide range of solar geometry
- i-AERUS based on MSG/SEVIRI observations
 - Previous EUMETSAT study, continued by Meteo-France
 - Improvements on aerosol model (7 models), surface contribution, uncertainty estimation (Jacobian)...
 - Operated in ICARE
- Demonstrate the potential for i-AERUS with MTG/FCI
 - More spectral bands \rightarrow better assessment of the aerosol model
 - Tests on FCI (MTG launch end'22) and/or ABI-AHI
 - Test for assimilation Framework with Météo-France
- Exploratory:
 - Synergy with UVN/S4 and IRS would serve AQ/PM25
 - GEO-ring : Explore the possibility i-AERUS applied to FCI/AHI/ABI demonstrational in ICARE

Strategy wrt Users & Assimilation Needs

- On-going developments in current (01, 02) and future (P1, P2, P3, P4, P5) processors
- Workflow of improvements and developments (inc. harmonisation, consistency...)
- Can be & Need to be tailored to user needs
- Prepare assimilation
 - Feedback for the definition of products (relevant parameters, associated performance)
 - Optimisation of the development driven by priorities expressed by users
- New parameters having impact on the radiative processes for NWP & AQ
 - AOD "dust"
 - Aerosol Models as defined in Assimilation Models
 - Alternatives with Particle Size Distribution or fine mode fraction
 - Aerosol Layer Height
 - Ash/dust characterisation
 - Single Scattering Albedo
 - PM25
- New type of data
 - High-temporal revisit with geostationary data (providing less parameters)
 - Additional information from polarimetric measurements

www.eumetsat.int

Thank you for your contribution !

- Fougnie, B., T. Marbach, A. Lacan, R. Lang, P. Schlüssel, G. Poli, R. Munro, and A. B. Couto, "The Multi-Viewing Multi-Channel Multi-Polarisation Imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization," *J. Quant. Spectrosc. Rad. Transf.*, APOLO special issue, No. 219, pp. 23–32, 2018.
- Lang. R., G. Poli, B. Fougnie, A. Lacan, T. Marbach, J. Riédi, P. Schluessel, A. B. Couto, and R. Munro, "The 3MI Level-1C Geo-projected Product Definition and Processing Description", *J. Quant. Spectrosc. Rad. Transf.*, APOLO special issue, No. 225, pp. 91–109, 2019.
- Fougnie, B., J. Chimot, M. Vazquez-Navarro, T. Marbach, and B. Bojkov, "Aerosol Retrieval from Space How the Geometry of Acquisition Impacts our Ability to Characterize Aerosol Properties," *J. Quant. Spectr. Rad. Transf.*, APOLO special issue, No. 256, pp. 1–12, 2020.
- Grzegorski, M., G. Poli, A. Cacciari, S. Jafariserajehlou, A. Holdak, R. Lang, M. Vazquez–Navarro, R. Munro, and B. Fougnie, "Multi-sensor Retrieval of Aerosol Optical Properties for Near–Real–Time Applications Using the Metop Series of Satellites: Concept, Detailed Description and First Validation", <u>Remote Sensing</u>, 2022, 14, 85, <u>https://doi.org/10.3390/rs14010085</u>, 2022.