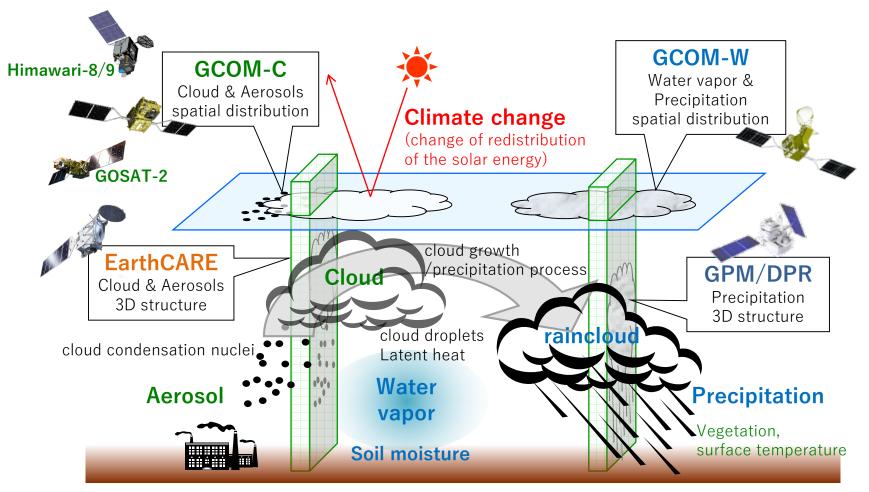

JAXA aerosol observation missions

Kazuhisa Tanada JAXA/EORC ICAP 2022 Monterey, California 18-20. 2022


1. JAXA Aerosol Missions

1.1 JAXA Earth observation satellite missions

1.2 JAXA science targets relating with aerosols: "aerosol-cloud-precipitation system"

For the Earth system prediction and supporting the policy making through

Precise diagnosis of the current state which is changing with the global warming

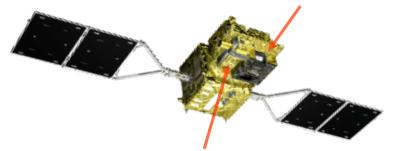
 $\rightarrow AOS$

<u>Understanding of the aerosol-cloud-precipitation system</u>

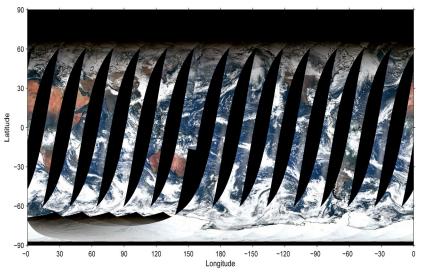
1.2 JAXA science targets: AOS Collaboration

ave Radiometer

- "Aerosol" and "Clouds, Convection and Precipitation" (A-CCP) were selected as the Designated Observables by the US Decadal Survey issued in 2017
- ✓ NASA established "AOS" (Atmosphere Observing System) project which is an international scheme to observe A-CCP with a constellation.
 - AOS constellation has two projects: AOS-I (Inclined orbit) and AOS-P (polar orbit)
- ✓ JAXA GPM + EarthCARE community has agreed to join the AOS project with PMM (Precipitation Measurement Mission) / KuDPR (Ku-band Doppler Precipitation Radar) as AOS-I with following new/advanced functions improved from GPM/DPR


CuDPR targets	KuDPR function (requirement)
To detect shallow & light rain/drizzle, snow For more accurate global precipitation map	Higher Sensitivity than DPR
To improve the model representation World first observation of vertical motion of the precipitation	Doppler Velocity Observation

1.3 JAXA aerosol missions: GCOM-C/SGLI



Global Change Observation Mission – Climate (GCOM-C), Second-generation Global Imager (SGLI)

InfraRed Scanner (IRS)

Visible and Near-infrared Radiometer (VNR)

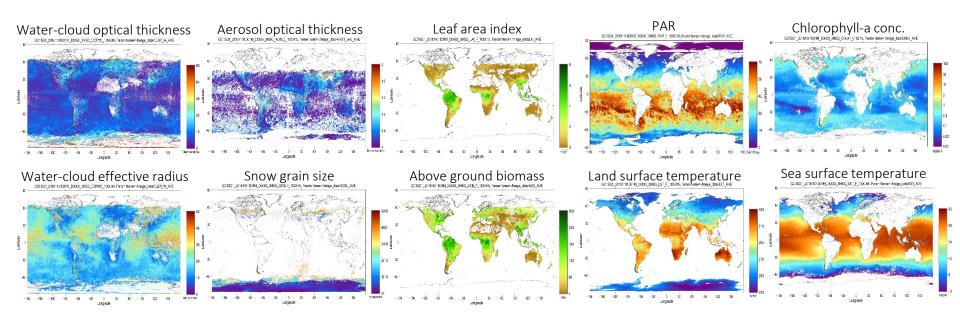
An example of SGLI/VNR daily coverage (5 Jan2018)

	GCOM-C SGL	l characteristics
	Launch Date	23 Dec. 2017
	Weight	2,000kg
		Sun-synchronous (descending local
	Orbit	time: 10:30), Altitude: 798km,
		Inclination: 98.6deg
)	Mission Life	5 years (3 satellites; total 13 years)
	Scan	Push-broom electric scan (VNR)
	SCALL	Wisk-broom mechanical scan (IRS)
	Scan width	1150km cross track (VNR: NP & POL)
		1400km cross track (IRS: SWIR & TIR)
	Spatial	250m (land and coast), 500m (TIR),
	resolution	1km
	Polarization 3 polarization angles for POL	
	Along track	Nadir for VN, SW and TIR, & +/-45
	tilt	deg for POL

1.3 JAXA aerosol missions: SGLI observation channel

Sub- system	channel	Center wavelength	width	Standard radiance	Saturation radiance	SNR	Pixel size		
Т		nm		W/m²/sr/µm or Kelvin		ΤΙ: ΝΕΔΤ	m	NUV band	
	VN01	379.9	10.6	60	240-241	624-675	250 /1000		
<u><</u>	VN02	412.3	10.3	75	305-318	786-826	250 /1000	Ocean color	
Visible	VN03	443.3	10.1	64	457-467	487-531	<mark>250</mark> /1000		
e a	VN04	490.0	10.3	53	147-150	858-870	<mark>250</mark> /1000	 Absorption by pigments 	
and	VN05	529.7	19.1	41	361-364	457-522	250 /1000	√250-m	
Ne	VN06	566.1	19.8	33	95-96	1027-1064	250 /1000		
ar	VN07	672.3	22.0	23	69-70	988-1088	250 /1000	Vegetation	
Infr	VN08	672.4	21.9	25	213-217	537-564	250 /1000		
Near Infrared	VN09	763.1	11.4	40	351-359	1592-1746	250/1000	│	
	VN10	867.1	20.9	8	37-38	470-510	250 /1000		
ad	VN11	867.4	20.8	30	305-306	471-511	250 /1000	Aerosol	
ion	PL01 +60				295	609			
lete	PL01 +0	672.2 2	20.6	25	315	707	1000		
Radiometer (VNR)	PL01-60				293	614		Scattering by particles	
Z	PL02 +60				396	646			
R	PL02 +0	866.3 2	20.3	30	424	763	1000	Cloud, Snow/Ice	
	PL0260				400	752			
	SW01	1050	21.1	57	289.2	951.8	1000		
oca –	SW02	1390	20.1	8	118.9	347.3	1000	Absorption by water/ice	
nfra	SW03	1630	195.0	3	50.6	100.5	250 /1000	J	
Infrared <u>anner (II</u>	SW04	2210	50.4	1.9	21.7	378.7	1000	Land/Sea/Snow	
Infrared <u>Scanner (IRS</u>)	TI01	10785	756	300K	340K	0.08K	250 /500/1000	surface temperature	
	TI02	11975	759	300K	340K	0.13K	250 /500/1000	Thermal emission $\checkmark 250$ -m	

Cited from Okamura et al., 2018. SNR is defined at the standard radiance and IFOV shown by bold characters



1.3 JAXA aerosol missions: GCOM-C products

- GCOM-C Elabel Ahanga Observation Mitston-Allmatio
- ✓ GCOM-C products have evaluated by using in-situ observations and other satellite data

(https://suzaku.eorc.jaxa.jp/GCOM_C/data/validation.html)

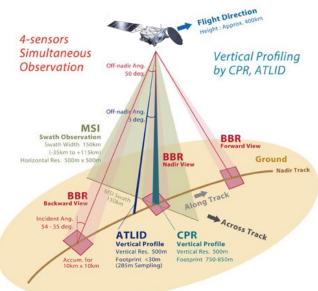
 ✓ All standard products (Level-1, 2, and 3) have been open to the public via JAXA data portal, "G-Portal" (GUI data search and direct FTP are available; https://gportal.jaxa.jp/gpr/)

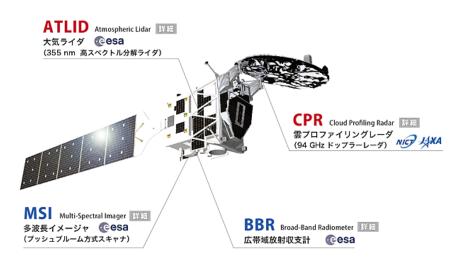
1.3 JAXA aerosol missions: GOSAT-2/CAI-2

- Greenhouse gases Observing SATellite-2 (GOSAT-2) /Thermal And Near Infrared Sensor for carbon Observation - Cloud and Aerosol Imager-2 (TANSO-CAI-2)
- The CAI-2 standard aerosol product will be produced by "the multiwavelength and multipixel method" (Hashimoto and Nakajima JGR 2017) which uses general characteristics of heterogeneous land surface reflectance and smoothly distributed aerosol over the surfaces.

/CAI-2

GOSAT-2			
Launch	Oct. 29 2018		
Orbit type	Sun synchronous (dec 13:00 \pm 0:15)		
Altitude	613 km		
Repeat cycle	6 days		
Mass	< 2,000 kg		
Power	5.0 KW		

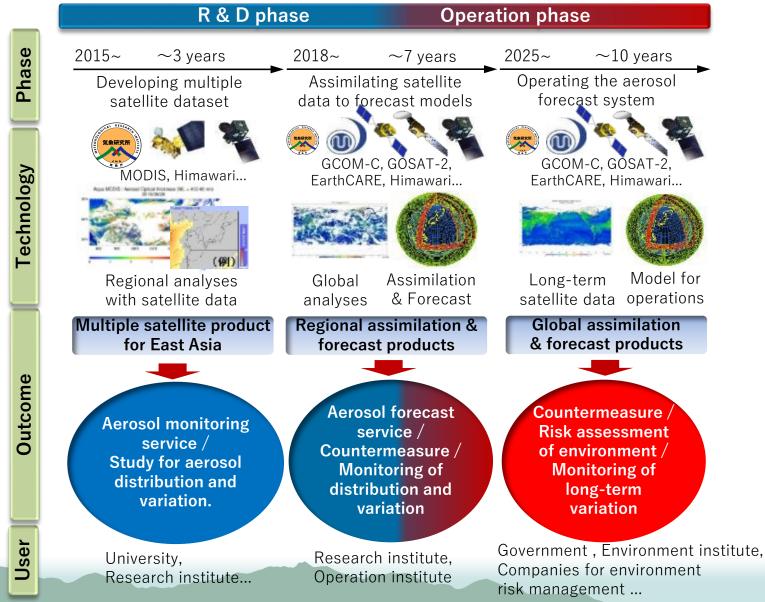

CAI-2 bands	nm	Tilt	Spatial resolution	Swath
B1	333 - 353			
B2	433 - 453	+20 deg.	160 m	
B3	664 - 684	(Forward	460 m	
B4	859 - 879	viewing)		
B5	1585 - 1675		920m	020 1
B6	370 - 390			920 km
B7	540 - 560	-20 deg.	160 m	
B8	664 - 684	(Backward	460 m	
B9	859 - 879	viewing)		
B10	1585 - 1675		920m	


1.3 JAXA aerosol missions: EarthCARE/Cloud Profiling Radar (CPP)

- EarthCARE will observe <u>3D structure of clouds and</u> <u>aerosols</u>, and reduce errors in climate change and weather forecast, by Japan (JAXA/NICT)-Europe (ESA) cooperation.
- CPR is the world's first W-band Doppler radar (94GHz) aboard a satellite. We can understand the vertical structure of clouds, as well as the ascending and descending movement of clouds.

• Mission

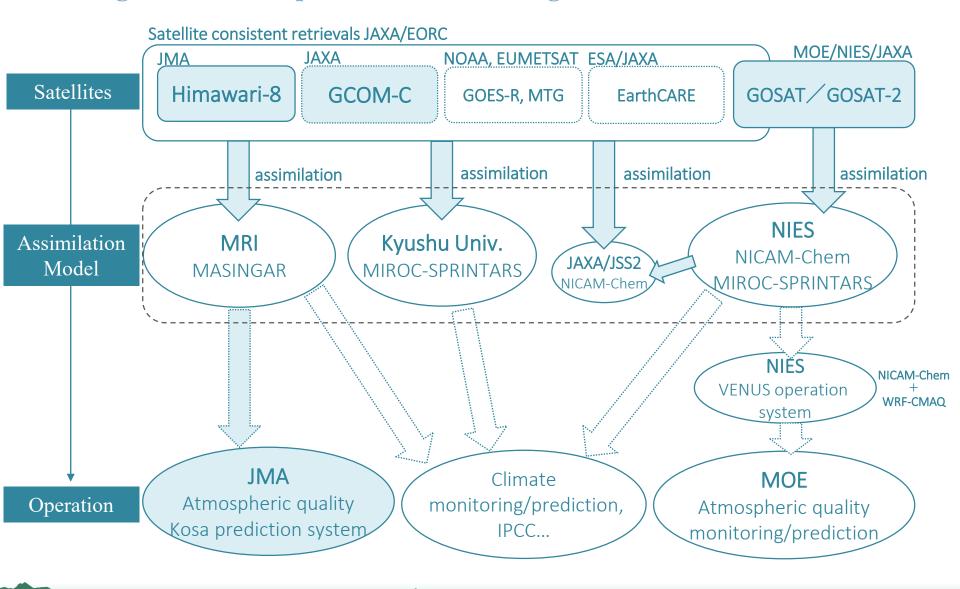
- Vertical profile of clouds, aerosol
- Interaction between clouds and aerosol
- Cloud stability and precipitation
- Orbit
 - Sun synchronous (14:00)
 - Altitude 400km
- Task sharing
 - JAXA/NICT (CPR)
 - ESA (ATLID, MSI, BBR, Spacecraft)
- Launch target
 - JFY2023



Integration of multiple satellite data through model assimilations

We aim to establish the aerosol data assimilation and forecasting system with JAXA satellites.

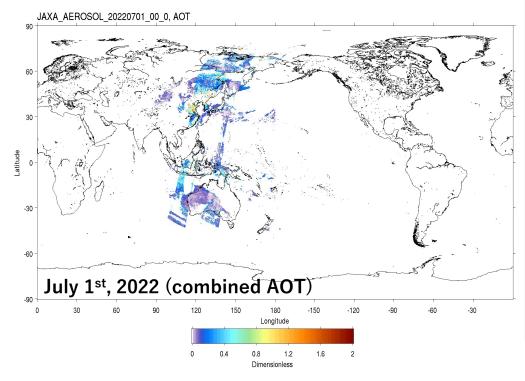
Integration of multiple satellite data through model assimilations Future Targets :


- ✓ JAXA, JMA/MRI, Kyushu University, and NIES will collaborate to develop a model assimilation system for GOSAT-2, EarthCARE in addition to Himawari and GCOM-C, and develop assimilation products (which uses not only AOT but also aerosol types and altitudes information)
- ✓ Accumulation of satellite data & assimilated aerosol data will contribute to climate change prediction research by not only monitoring the aerosol's current situations and short-term forecasts, but also by monitoring long-term variation in aerosols and improving knowledge of their generation and transport.

Schedule FY2022:

① Development of the aerosol products for assimilation and analyses with the products	 Improvement of aerosol products by assimilation studies: improved handling of errors for combining satellite data; developing combined data Support for switchover to Himawari-9 Case studies for analysis of global environmental changes using aerosol products: ex.) biomass burning aerosols
② Research of the data assimilation for aerosol transport model and prediction	 Study of improved assimilation using multi-satellite data such as GCOM-C Study on improvement of prediction by effective assimilation with not only AOT Analysis of global environmental changes using assimilation products (and reanalysis products: TBD) Development of data providing system for practical use
③ Improving the Himawari -Monitor system	 Operation of the Himawari-Monitor processing system, etc.

Integration of multiple satellite data through model assimilations



Integration of multiple satellite data through model assimilations

Development of the combined satellite dataset for assimilation input (every 3 hours)

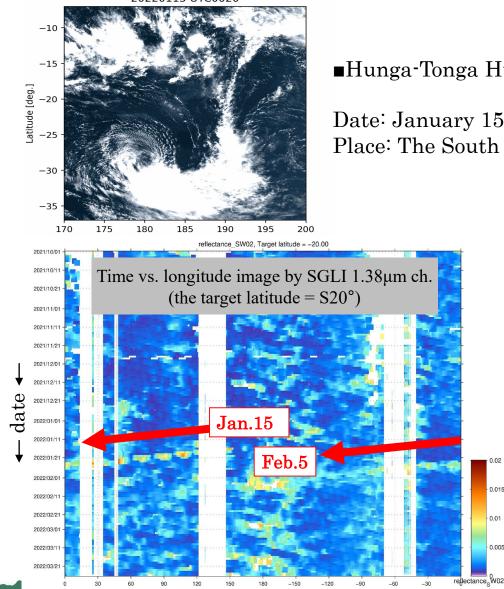
Uncertainty is also output for data assimilation (obtained from Himawari/AHI's AOT and SGLI Ver.3 AOT)

NetCDF product will contain: AOT UNC_AOT AAE UNC_AAE SSA UNC_SSA ...

(The SGLI & Himawari combined values are bias corrected and weighted by $1/UNC^2$)

Spatial resolution: 0.05 deg.

Purpose : To provide to related institutes and public, and prepare for adding other satellite products smoothly.


Next : Make error definitions consistent with other products (MODIS, AHI, etc.) so that they can be easily used in assimilation.

2. Aerosol Observation by GCOM-C/SGLI

2.1 GCOM-C/SGLI aerosol observation:

Monitoring of the aerosols emitted from Tonga volcanic eruption

longitude [deg.]

■Hunga-Tonga Hunga-Ha'apai volcanic eruption

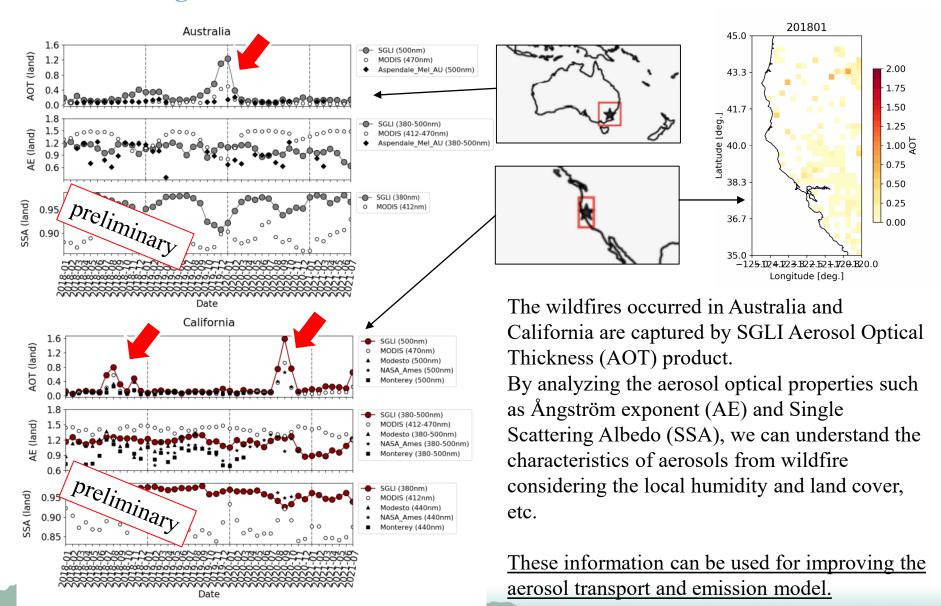
Date: January 15, 2022 Place: The South Pacific island nation of Tonga

0.015

0.01

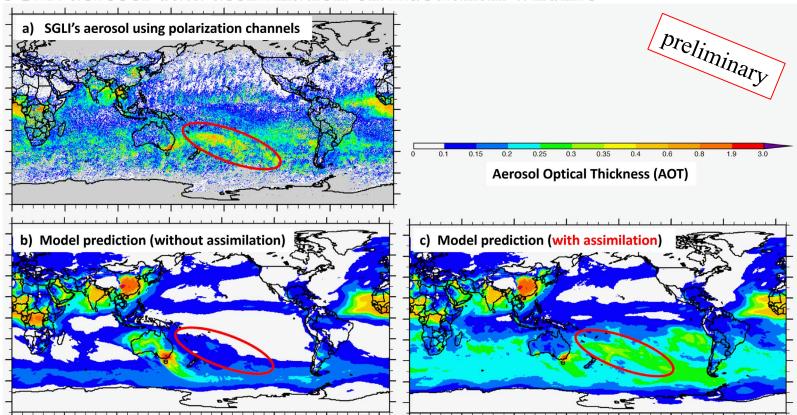
0.005

Since the 1.38 µm channel (shortwave infrared) is within the strong water vapor absorption band, light from the ground surface and the lower layer of the atmosphere cannot be seen.


By utilizing this characteristic, it is possible to extract the scattered light from clouds and aerosols in the upper atmosphere.

As for the aerosols emitted from the Tonga volcanic eruption, which exist in stratosphere, we confirmed that they spread westward and returned to the same region in about three weeks.

2.1 GCOM-C/SGLI aerosol observation:


Monitoring of the aerosols emitted from wildfires

2.2 GCOM-C/SGLI data assimilation:

SGLI aerosol data assimilation on Australian wildfire

An aerosol data assimilation experiment using SGLI polarization observation on Australian wildfire (provided by <u>K. Yumimoto, Kyushu University</u>):

- a) Aerosol optical thickness calculated by using SGLI polarization observation,
- b) Model estimation value without assimilating SGLI data,
- c) Model estimation value with assimilating SGLI data

This result suggests that the satellite observation can improve the aerosol model with the data assimilation.

3. Summary

- JAXA is operating polar orbit satellite missions, GCOM-C and GOSAT2, and will have EarthCARE for the aerosol observation.
- A sensor common algorithm is developed in JAXA/EORC
- Satellite AOT assimilation is investigated with JMA/MRI, Kyusyu Univ., AORI, and NIES
- The "Aerosol and Clouds, Convection and Precipitation" is the next key science target and "AOS" project is now established.
- GCOM-C/SGLI aerosol observations show good possibilities to improve the models.

Appendix