Modeling global aerosols with the SILAM model

Andreas Uppstu, Rostislav Kouznetsov, Risto Hänninen, Yuliia Palamarchuk and Mikhail Sofiev

SILAM v.5.8

- Modules
 - 14 chemistry transformation modules
 - 9 source terms,
 - All modern data assimilation techniques: 3D-Var,,4D-Var, EnKF, EnKS
- Domains: from global to beta-meso scale (~1 km resolution)
- Any meteo input that follows WMO standards
- Technically
 - 192 FORTRAN-2005 modules, ~250 classes, OMP+MPI parallel
 - 18 MB of code (~130,000 lines)
 - The largest FMI own model
 - Installed in a dozen of countries for research and operational purposes
 - ~10,000 lines in ~100 environment scripts (Python-Shell)

Aerosols in SILAM

- Primary aerosols
 - Anthropogenic: mineral, EC, OC
 - Biogenic: pollen, fungal spores, aphids (small insects)
 - Sea salt
 - Wind-blown dust
 - Fire-induced EC, OC
 - Toxics: heavy metals, non-volatile persistent organics
- Secondary aerosols
 - sulphates
 - nitrates
 - ammonium (ammonium nitrate)
 - Semi-volatile VOC
 - Toxics: semi-volatile persistent organics
- Representation: sectional, with possibility of sub-sectional size profile
- Volatility scheme: VBS

Rapid evolution

- Since 2018, model updates have been made in several key areas:
 - wet deposition
 - dust emission
 - fire emission
 - anthropogenic emissions
 - CB4 to CB5 chemistry
- Most of these updates were not present at the time of the ICAP multi-model evaluation paper

Concentration, NO₂, ugN/m3, 00:0003NOV2018

Operational AC/AQ-modelling

Global: 20km, SILAM v.5.8 troposphere+ stratosphere 03 column, DobsonUnit, 17FEB2016

Forecast horizon: 5 days glob, 4 days Europe/Asia 2 days Northern Europe **Resolution: 1 hr** http://silam.fmi.fi

> Asia: 14km, troposphere SILAM v.5.5

Northern Europe: 2.5km, troposphere Europe: SILAM v.5.8 10km, troposphere boundaries: C-IFS hindcast: 3D-Var

SILAM v.5.7 in Europe

Evaluation against AERONET

Bias

Correlation

Model avg 0.157 median 0.108 Obs. avg 0.163 median 0.122

Average: 0.64 Median: 0.69 Full: 0.75

Wet deposition development

- Still very much work in-progress
- Due to space limitations, we construct the vertical scavenging profile from the 3D cloud water of the IFS model
- A saturation threshold for the formation of rain
- A maximum scavenging rate based on either the convective available potential energy (CAPE) or the horizontal wind

Fire and sea salt emission

- New emission factors for MODIS FRP
- New diurnal cycles
- Emissions based on VIIRS in development
- Sea salt emission unchanged, but needs improvement: Sovieva, S., AMT, in press

Dust emission model development

- Previously, our dust emission was based on the friction velocity, calculated from the 10 m wind, as well as many of the bells and whistles that have been published about dust emission
- It did not work for us
- Issues:
 - Strongly nonlinear model applied to model cells of 0.2 deg x 0.2 deg size or larger
 - Scaling of the emission with model resolution
 - Intra-cell correlation of key model parameters: soil type, soil moisture, leaf area index, surface roughness
 - Not accurate description of the impact of the clay content of the soil (crust formation and binding of soil moisture)
 - Inaccurate maps of the key parameters

Dust emission, continued

- Principle: instead of adding even more detail into an already complicated model, start with a really simple effective model
- constant emission map × $(v_{10m} v_{min})^3$ × soil moisture limiter × snow depth limiter × leaf area index limiter
- v_{min} = 5 m/s
- Constant emission map: surface roughness from wind scatterometer data raised to a negative power

Surface roughness from the ERS wind scatterometer

Conclusions and future development

- Our aerosol forecast is strongly impacted by intracell processes that are difficult to model in a physically rigorous way
- No data assimilation: no help from satellites, but there are also significant benefits
- Development is needed in several areas:
 - Sea salt emission / transport
 - Fire emissions in the tropics
 - Data assimilation of emission sources