
U.S. Naval Research Laboratory
Advancing research further than you can imagine ®

Adventures in the Cloud
(or How I learned to stop worrying and love elasticity)

Tim Whitcomb
NRL Marine Meteorology Division, Monterey, CA October 2022 ICAP Meeting

Distribution Statement A: Approved for public release. Distribution is unlimited.

Conclusions
1. Leverage PaaS to accelerate experimentation
2. Treat everything as code
3. Containers solve problems
4. Architect for elasticity

What is cloud
computing anyway?

Cloud Computing

Cloud
Computing

On-
demand

self
service

Broad
network
access

Resource
pooling

Rapid
elasticity

Measured
Service

“Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider
interaction.”

- The NIST Definition of Cloud Computing (Mell
& Grance, 2011)

Cloud Computing

Cloud
Computing

On-
demand

self
service

Broad
network
access

Resource
pooling

Rapid
elasticity

Measured
Service

“Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider
interaction.”

- The NIST Definition of Cloud Computing (Mell
& Grance, 2011)

Implicitly includes the
“shared responsibility model”

Leverage PaaS to
accelerate
experimentation

As-a-Service Spectrum

(adapted from https://blog.hubspot.com/service/iaas-paas-saas)

Category What is it? IaaS PaaS SaaS
Infrastructure Networks, virtualization,

hardware
Vendor Vendor Vendor

Platform OS, middleware, API,
runtimes

You Vendor Vendor

Software Data and apps You You Vendor

IaaS: I’m deploying VMs and putting my own os and software on them
PaaS: I’m calling APIs for vendor products to build my software
SaaS: I’m using a pre-existing software package

Case Study: TC Ensemble Forecasting
Requirement: A method to pass event data between
distributed actors (i.e. storage, forecast workflow
orchestration, dissemination workflows)

Solution: Something like Apache Kafka is fit-for-purpose to
support the requirement:
• Supports publish/subscribe messaging
• Supports multiple publishers
• Supports multiple subscribers
• Well-supported client API

Case Study: TC Ensemble Forecasting
Requirement: A method to pass event data between
distributed actors (i.e. storage, forecast workflow
orchestration, dissemination workflows)

Solution: Something like Apache Kafka is fit-for-purpose to
support the requirement:
• Supports publish/subscribe messaging
• Supports multiple publishers
• Supports multiple subscribers
• Well-supported client API

Challenge: If you want to use Kafka, you’re going to
have to provision a VM, install an OS, install Kafka,

configure Kafka, and configure clients

This is the IaaS approach

Case Study: TC Ensemble Forecasting
Requirement: A method to pass event data between
distributed actors (i.e. storage, forecast workflow
orchestration, dissemination workflows)

Solution: Use Azure Event Hubs as a PaaS alternative to Kafka
• Skip VMs, OS, etc. right to “client configuration”
• Use to test out and prove the design
• Accelerate development of a working prototype

Case Study: TC Ensemble Forecasting
Requirement: A method to pass event data between
distributed actors (i.e. storage, forecast workflow
orchestration, dissemination workflows)

Solution: Use Azure Event Hubs as a PaaS alternative to Kafka
• Skip VMs, OS, etc. right to “client configuration”
• Use to test out and prove the design
• Accelerate development of a working prototype

There are good reasons (especially long-term) to
use IaaS and Kafka. Starting with PaaS reduces

the activation energy of new ideas and new designs

Treat Everything as
Code

Code all the way down
• Applications already consist of instructions in code

– But they need to be built and tested
• Continuous integration pipeline tools use code to specify

automated build and test
– But they need to run on an OS

• Provisioning tools like Ansible, Chef, Puppet use code to
configure systems (e.g. install OS updates, install
software stack, apply security patches)
– But they need to run on hardware/virtualized platforms

Cloud Computing

Cloud
Computing

On-
demand

self
service

Broad
network
access

Resource
pooling

Rapid
elasticity

Measured
Service

Cloud resources are deployed via an
application programming interface (API) –
so cloud deployments are a sequence of
API calls

Which gives rise to Infrastructure as Code

Case Study: Ship Routing
Scenario: Need to repeatedly and reliably deploy cloud
resources to support development and demonstration for
ONR 6.2 ship routing project.

Solution: Capture deployment configuration (from networks
to web services) in Terraform script

Capturing the deployment in Terraform provided confidence to tear down the demo
environment and bring it back up with beefier servers

Case Study: Ship Routing
Scenario: Need to repeatedly and reliably deploy cloud
resources to support development and demonstration for
ONR 6.2 ship routing project.

Solution: Capture deployment configuration (from networks
to web services) in Terraform script

Capturing the deployment in Terraform provided confidence to tear down the demo
environment and bring it back up with beefier servers

Using IaC might slow initial deployments – the first time.
Benefits far outweigh the additional cost up front.

Case study: Ship Routing
resource "azurerm_virtual_network" "vnet" {

name = "vnet-${var.project}-${var.environment}-${var.location}"
location = var.location
resource_group_name = azurerm_resource_group.resource_group.name
address_space = ["10.1.0.0/16"]

}

resource "azurerm_subnet" "k8s_nodes_subnet" {
name = "snet-k8s-${var.project}-${var.environment}-${var.location}"
resource_group_name = azurerm_resource_group.resource_group.name
virtual_network_name = azurerm_virtual_network.vnet.name
address_prefixes = ["10.1.2.0/24"]

}

IaC isn’t just for storage or virtual machines – all the way down to the network architecture that is used.

Containers Solve
Problems
(even problems you didn’t know you had!)

Containers Drive Portability

19

“I don’t know why it doesn’t
work on my on-prem system – it
works fine at DSRC”

“I need to update to a new
library version, but it’ll break that
other code”

“Are you sure you’re running
exactly what we gave you?”

Containers Drive Portability

20

“We moved from Koehr to
Narwhal and things still
ran”

“I need to issue a new
image with updated
libraries for the new
feature.”

“This runs on-premises
and in the cloud”

Containers Drive Portability

21

We moved from Koehr to
Narwhal and things still
ran

I need to issue a new
image with updated
libraries for the new
feature.

This runs on-premises
and in the cloud

Containers package an application and its dependencies: all
the host needs to provide is a container runtime.

Containers Drive Portability

22

We moved from Koehr to
Narwhal and things still
ran

I need to issue a new
image with updated
libraries for the new
feature.

This runs on-premises
and in the cloud

Containers will help make your implicit
dependencies explicit!

Case Study: Model Evaluation Toolkit
• Model Evaluation Toolkit developed by NCAR

Developmental Testbed Center (DTC)
• Community package for forecast verification tasks –

traditional metrics, object-based methods, and more
• Long list of dependencies: BUFRLIB, NetCDF4, Cairo,

GRIB2C, etc.
• Non-trivial installation effort

Case Study: Model Evaluation Toolkit

24

Configure the simplest Singularity recipe:

Bootstrap: docker
From: dtcenter/met:8.1

Built on NRL workstation

Published Singularity image to Navy DSRC HPC (a file copy!)

Executed MET via Singularity image at Navy DSRC
No additional new stuff required!

Architect for Elasticity

Cloud Computing

Cloud
Computing

On-
demand

self
service

Broad
network
access

Resource
pooling

Rapid
elasticity

Measured
Service

Provision things when you
need them and delete them

when you don’t.

Case Study: TC Ensemble Forecasting
Requirement: Execute a 21-member forecast ensemble for
every active tropical cyclone identified by NHC & JTWC
optimizing for time-to-solution.

Solution: A system that looks at first glance like an on-
premises HPC system, but that integrates with the PBS job
scheduler to spin up new compute nodes when the queue
starts to back up.

Case Study: TC ensemble Forecasting

(Fig. 2 from Whitcomb, et al. 2022)

Case Study: METOC Impact Calculations

Task
Queue Queue Reader Task Processor

Simple process with simple components – grab a piece of work off a queue, and
run it through a standalone application

Case Study: METOC Impact Calculations

Task
Queue Queue Reader Task Processor

Architecting for elasticity starts by identifying scalable components

Case Study: METOC Impact Calculations

Task
Queue Queue Reader Task Processor

Queue Reader Task Processor

This is horizontal scaling – as work
grows, add more workers…

…but those workers still need some
place to run!

Case Study: METOC Impact Calculations

Task
Queue Queue Reader Task Processor

Queue Reader Task Processor
Architecting for elasticity ends by
connecting increased demand signal
(e.g. more workers) to an elastic scaling
capability (e.g. a cluster autoscaler)

Case Study: METOC Impact Calculations

Task
Queue Queue Reader Task Processor

Queue Reader Task Processor
Architecting for elasticity ends by
connecting increased demand signal
(e.g. more workers) to an elastic scaling
capability (e.g. a cluster autoscaler)

Successful elastic architectures rely on
implementing multiple best practices like
containers and automated infrastructure

provisioning

Conclusions

Advancing research further than you can imagine ®35

1. Leverage PaaS to accelerate experimentation
2. Treat everything as code
3. Containers solve problems
4. Architect for elasticity

Advancing research further than you can imagine ®36

1. Leverage PaaS to accelerate experimentation
2. Treat everything as code
3. Containers solve problems
4. Architect for elasticity

Familiarity with cloud computing allows me
to think differently about problem solving

	Adventures in the Cloud�(or How I learned to stop worrying and love elasticity)
	Conclusions
	Slide Number 3
	Cloud Computing
	Cloud Computing
	Slide Number 6
	As-a-Service Spectrum
	Case Study: TC Ensemble Forecasting
	Case Study: TC Ensemble Forecasting
	Case Study: TC Ensemble Forecasting
	Case Study: TC Ensemble Forecasting
	Slide Number 12
	Code all the way down
	Cloud Computing
	Case Study: Ship Routing
	Case Study: Ship Routing
	Case study: Ship Routing
	Slide Number 18
	Containers Drive Portability
	Containers Drive Portability
	Containers Drive Portability
	Containers Drive Portability
	Case Study: Model Evaluation Toolkit
	Case Study: Model Evaluation Toolkit
	Slide Number 25
	Cloud Computing
	Case Study: TC Ensemble Forecasting
	Case Study: TC ensemble Forecasting
	Case Study: METOC Impact Calculations
	Case Study: METOC Impact Calculations
	Case Study: METOC Impact Calculations
	Case Study: METOC Impact Calculations
	Case Study: METOC Impact Calculations
	Slide Number 34
	Slide Number 35
	Slide Number 36

