Met Office

An Update on the Met Office dust assimilation and forecasting system

Heather Lawrence, Alex Paterson, Anthony Jones, Melissa Brooks

1. NWP: improved use of observations

Heather Lawrence, Alex Paterson

Set Office Dust in the NWP model

- CLASSIC dust forecast model with 2 bin setup
- Other aerosols are not included (smoke, pollution, sea salt, etc.)
- Interactive dust (direct radiative effect) since 2015
- Forecasts are initialised using MODIS satellite observations (2 instruments)

MODIS Assimilation: Dust Filtering

Filtering is needed to remove non-dust aerosol and may introduce errors Rely on a geographical ocean check + secondary retrieval products

Met Office Development of the dust assimilation system

Maintenance activities (high priority) to evaluate more AOD products for assimilation

- Suomi-NPP VIIRS: NASA product v1
- Metop-B/C PMAp v 2.1& 2.2

PMAp & VIIRS Evaluation

Check the performance of PMAp/VIIRS relative to MODIS:

- 1. Compare to ground-based AERONET data
- 2. Compare directly to Aqua/Terra MODIS

PMAp over ocean

PMAp v2.1 ocean

Met Office

PMAp v2.2 ocean

PMAp v2.2 ocean dust

Met Office

Evaluation summary

- VIIRS looking promising generally similar quality to MODIS
- PMAp does not perform as well as MODIS. It shows some promise over ocean.

VIIRS Assimilation

Met Office VIIRS Assimilation: Dust Filtering

MODIS filtering

Surface	Aerosol filters	
	Geographical filter	
0	Aerosol Fine Mode Fraction \leq 0.4	
	Ångstrom Exponent \leq 0.5	
Ocean	Aerosol Effective Radius $>$ 1.0 μm	
	Aerosol Mass Concentration \geq 1.2 x 10^{-4} kg/m^2	
	AOD ≥ 0.1 or (AOD < 0.1 & Background AOD ≥ 0.1)	
Land:	0.878 < SSA < 0.955	
DB retrieval	s Ångstrom Exponent < 0.6	
Land:	Ångstrom Exponent < 0.45	
DT retrieva		

Not available for VIIRS Deep Blue, replace with aerosol type check:

- maritime (low AOD)
- dust (AOD > 0.15)

Assimilation set-up: Dust Filtering

Apply similar filtering to MODIS based on secondary products...:

Met Office

Not all fields available for VIIRS over ocean, less data removed

Met Office

Assimilation set-up: Check Dust Filtering

Angstrom Exponent:

$$\frac{AOD_{\lambda}}{AOD_{\lambda_0}} = \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha}$$

Identify Dust: AERONET Angstrom Exponent < 0.6 Identify Non-dust: AERONET Angstrom Exponent >= 0.6

	Dust Nobs	Non-dust Nobs	Dust %	Non-Dust %
VIIRS ocean dust-filtered, AOD > 0.2	442	56	91%	9%
VIIRS land filter, AOD > 0.2	674	931	43%	57%
MODIS land filter, AOD > 0.2	250	351	38%	62%
VIIRS land aerosol type filter, AOD > 0.2	376	244	61%	39%

Assimilation set-up

Set-up:

- Apply dust filtering
- Blacklist over Taklamakan desert
- 10 km thinning to replicate MODIS
- Apply same observation error covariances as MODIS (R = 0.222)
- No bias correction

Mean VIIRS – MODIS AOD

Improved radiative transfer for VIIRS?

Met Office Assimilation of VIIRS: experiment set-up

Assimilation trials:

Winter: Dec 2019 – Feb 2020 Summer: May – June 2020

- 1. VIIRS + MODIS
- 2. Add VIIRS with no MODIS

Met Office

Results: VIIRS + MODIS Assimilation

Green = lower RMSE

```
Verification: EC
Analysis
```

Met Office Analysis Statistics against AERONET: selected sites, VIIRS + MODIS - MODIS

	Total AOD	Coarse AOD	Coarse AOD AE<0.6	
All sites	0.0002 +/-	0.0056 +/-	-0.0029 +/-	
	0.0014	0.0015	0.0050	
Sahara + middle	-0.0096 +/-	-0.0052 +/-	-0.0115 +/-	
East + Caribbean	0.0086	0.0054	0.0083	
Australia	-0.0017 +/-	0.0027 +/-	-0.0004 +/-	
	0.0084	0.0119	0.0101	
S. Africa	0.0004 +/-	0.0016 +/-	0.0076 +/-	
	0.0013	0.0010	0.0163	
S. America	-0.0038 +/-	0.0045 +/-	0.0056 +/-	
	0.0034	0.0052	0.0134	
N. America	0.0016 +/-	0.0048 +/-	-0.0054 +/-	
	0.0016	0.0022	0.0128	
Europe	0.0039 +/-	0.0098 +/-	0.0066 +/-	
	0.0017	0.0025	0.0056	
Asia	-0.0012 +/-	0.0072 +/-	0.0063 +/-	
	0.0039	0.0043	0.0184	

Changes in STDEV(Analysis – AERONET)

Red: negative statistically significant

Blue: positive statistically significant

VIIRS Assimilation Conclusions

- S-NPP VIIRS shows good impact in assimilation:
 - Improvements to near-surface temperature
 - Small (tiny) improvements to total AOD over the Sahara against AERONET

2. ERDC collaborative project: improved mapping of dust emissions

Melissa Brooks

ERDC lead: Sandra LeGrand - US Army Engineer Research and Development Center

Dust Sources: ERDC-GEO

A 3 year joint project between the US Army ERDC, US Air Force and the Met Office

- This high resolution emission potential is averaged to the model grid and compared to the model's idealized emissions to produce a correction factor.
- Dust emission is highly non-linear; small scale features can produce very large emissions.
- Previous maps (e.g. SW Asia and Middle East are difficult to make:
 - Meticulously hand drawn by trained analysts
 - Expensive / time consuming (~ £3M over 6+ years)
- Using a machine learning approach to generate these maps from a wide range of inputs, satellite imagery, topography etc. is scalable and aims to have a datasaet suitable for global dust modelling by completion of the project.

• Takes high resolution geomorphological landform maps and estimates an idealized 'dust emission potential'

GOAL: Better represent major high impact dust events

ERDC-GEO

North Africa, Australia, Asia, mapped.

- Implementation and evaluation work is ongoing over North Africa on test cases.
- Maps for Australia and Asia are very new and modelling work about to commence on identified test cases.

- Dust source identification seem to handle salt crust formation well. The training data had these features identified by hand and the ML &multi-sensor approach seems to produce something sensible. In Australia we are trying to specify these as a seasonal climatology.
- ML approach gives diagnostics on what is important for the method: vegetation dominated channels are not very important, so it is likely to robust to future changes in vegetation cover in semi-arid regions.

North Africa, Australia, Asia, mapped.

- Modelling work is underway using these maps and being evaluated
- In this case we have visibility diagnostic maps from a 4km regional model over N. Africa showing standard control and test with ERDG-GEO

 On course to have a dataset for a global model by the end of 2023 or soon after, and implementation testing is already underway.

3. Next Generation modelling: from CLASSIC to UKCA

Anthony Jones, Adrian Hill

www.metoffice.gov.uk

© Crown Copyright 2020, Met Office

Met Office Improvements to UKCA dust A new Below-Cloud Scavenging (BCS) scheme

- UK climate model has changed aerosol scheme (CLASSIC to UKCA)
- CLASSIC dust, currently the default in the UK climate model, has 6 bins and has high skill in simulating dust compared to obs
- UKCA dust (2 modes) travels too far from source regions
- UKCA dust bias could be due to the use of a single-moment below cloud scavenging (BCS) scheme
- Aim: improve BCS by liquid rain (no change to snow) by adding a doublemoment scheme accounting for rain-rate and aerosol size properties

Results compared to UKCA (default) and CLASSIC

- A significant improvement to simulated dust compared to UKCA (default) and now comparable to CLASSIC
- However, dust optical depth is worse near source regions possibly owning to missing dust mass associated with 6th bin
- Still deposition biases over Southern Ocean – too much dust emission in southern hemisphere?
- New scheme on the trunk since UM12.2 (ticket 6544) and available by setting I_dust_slinn_impc_scav = True

Figure 11 from Jones et al. (2022) https://doi.org/10.5194/acp-22-11381-2022

© Crown copyright 2022, Met Office

Met Office

Summary: Ongoing work

- Maintain current assimilation system by preparing replacements for MODIS
- Port dust assimilation and forecasting/climate system to the next generation models
- Ongoing collaborative project to improve dust emissions in the forecast model

Met Office Summary: planned developments

Next Generation modelling:

- Continuing development of Next Generation modelling & data assimilation
 - E.g. developing the use of UKCA for NWP

Improved use of Observations:

- Making Suomi-NPP VIIRS AOD operational
- Testing new datasets for assimilation:
 - NOAA-20 VIIRS (NOAA or NASA product?)
 - Investigating use of infrared data e.g. SEVIRI 1D-Var retrievals, IASI MAPIR dust product

Improved forecasts:

- Ongoing testing/development of more realistic dust emission (aiming for operations 2025)
- Opportunities for all-aerosol modelling are being considered as the new system is being developed