

The NASA Micro Pulse Lidar Network: Update and Version 3

Principal Investigator: Judd Welton, NASA GSFC Code 612

MPLNET Staff:

Sebastian Stewart, Aether Embedded/SSAI GSFC Code 612 Larry Belcher, SSAI GSFC Code 612 Jasper Lewis, UMBC GSFC Code 612 Simone Lolli, CNR Italy James Campbell, Naval Research Lab Lisa Nalborczyk, SSAI GSFC Code 612

All our international network partners

And of course AERONET New MPLNET Motto

Objective:

Version 3 Became Operational in November 2021

Develop a long-term, global lidar network to profile aerosol and cloud vertical distribution and properties at key AERONET sites, in support of:

- Domestic and international aerosol and cloud research
- Climate change and air quality studies
- NASA satellite and sub-orbital missions
- Aerosol modeling and forecasting

MPLNET is funded by the NASA Radiation Sciences Program and Earth Observing System, with significant contributions from our many site partners

Larger

Currently unavailable

1st Commercially Available **Autonomous Eye-Safe** Lidar:

• Suitable for Network Operations

Developed at NASA in the early 1990s, patented and licensed for commercial use

Sold commercially since 1995

Science and Engineering Services Inc Sigma Space Corporation Leica Geosystems Droplet Measurement Technologies

Green Laser (532 nm)

Atmospheric Profiles from 250 m to 30 km

Polarized ~2008

Good performance Less expensive Smaller, easier to ship/install

- 80 sites total (26 active, 54 inactive). 28 countries, 46 partners.
- 6 more sites in planning
- Continuous (day/night) operations
- 97% of network co-located with AERONET Instrumentation:
- Micro Pulse Lidar, miniMPL
- Eye safe, green backscatter lidar. Polarized in early 2000s
- Entire network has polarized MPL since ~2016

Citation Map of MPLNET publications: lead and co-author

Instrument Development

Necoured Vol Depol Rolio (%)

Now supported!

Full support of polarized MPL in Version 3.

Limited support of polarized miniMPL in Version 3 (L1 and L1.5). Addition of polarized / particle shape product variables.

Multi-year system and component performance study completed. **Polarization Calibration Process Developed**

Commercial Wide Field Receiver in review

New commercial solution provided by AE

Provides overlap calibration for old and new MPLs More rugged design, field tested **Controller** - Computer connection, remote control WFR data refined and improve MPL optical model

New: calculate accurate overlap from MPL specs

Deployment to all sites staring FY23

New Enclosures

New commercial solution provided by AE Single unit design, easy to ship & setup MPL and miniMPL sizes Single TEC unit and much more efficient design Better temperature control in hot/cold env Full featured control panel with diagnostics Computer connection, remote control Scalable design, room for extensions

Development of new data products and improvements to existing ones: Cloud Product

- Improved Cloud Detection
- Estimates of Thin Cloud Optical Depth and Extinction
- Cloud Phase
- Hourly & Daily Cloud Fractions (column and low, mid, high level)

Lewis, J., J. Campbell, E. Welton, S. Stewart, and P. <u>Haftings</u>, 2016: Overview of MPLNET Version 3 Cloud Detection. Journal of Atmospheric and Oceanic Technology, 33, 2113–2134, doi: 10.1175/JTECH-D-15-0190.1.

Cloud detection comparison 2012 GSFC: Older V2 results (detection only at 1 minute temporal res). V3 algorithm results at 1 minute, and the final multi-temporal results.

Lewis, J.R., J.R. Campbell, S. Lolli, S.A. Stewart, I. Tan, and E.J. Welton, 2020. Determining Cloud Thermodynamic Phase from the Polarized Micro Pulse Lidar. Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020.

Figure 6. Frontal cloud system at GSFC on 27 March 2018: NRB (a), volume depolarization ratio (b) and phase mask (c). Altitude bins where the signal uncertainty is twice the signal strength have been suppressed for easier viewing. Note the use of a log scale for the NRB. The phase mask indicates liquid water clouds (grey), mixed-phase clouds (magenta), ice clouds (cyan), and unknown phase (pink). The GEOS-5 temperature is shown by the contour lines (in 10 °C intervals). The -37 °C isotherm is indicated by the dashed contour line.

Figure 9. Supercooked liquid fraction (SLF) averaged over GSPC (2015-2019) from MPLNET (solid line) and CALIOP (black ×) observations. The inset shows the horizontal distribution of CALIOP SLFs at the -20°C isotherm surrounding GSFC (indicated by the red ×). The CALIOP SLF profile is kalculated using the 2.5° latitude × 5° longitude grid box containing GSFC. The shaded area indicates the standard error for MPLNET observations. CALIOP standard errors are less than 0.7 at all isotherms.

Development of new data products and improvements to existing ones: Aerosol

- **Product** Same retrieval algorithms traced back to V1, improved implementations
 - Addition of AERONET Lunar AOD provides first night-time constraints
 - Higher quality aerosol retrievals and diurnal calibrations
 - New variable for polarized data: aerosol depolarization ratio

Aerosol Properties:

- Retrievals at coincident AERONET AOD observations
- Using constrained Fernald solution (Welton et al 2000): integral of extinction = AOD
- Algorithm calculates the lidar calibration value (C), backscatter and extinction profiles, and a <u>column average lidar ratio*</u>

* If different aerosol "types" are stratified in different layers, then the MPLNET lidar ratio will be a weighted average of all.

Development of new data products and improvements to existing ones: PBL Product

- V2 beta PBL product was not officially released (too many bugs)
- V3 PBL product significantly improved using Lewis et al 2013 algorithm
- Further refinements during past 5 years led to better diurnal performance
- Product provides mixed layer height and mixed layer AOD

GSFC, USA: 2017-03-16 to 2017-03-20

Ragged_Point, Barbados: 2015-07-25 to 2015-07-26

Modernized Data Product Suite and aligned with AERONET V3

Online Product Information: https://mplnet.gsfc.nasa.gov/product-info/

Version 3 Products

- Suite of 4 products grouped by theme, each containing variables and diagnostics
- Standardized format, netcdf4, CF compliance, full error propagation from raw data
- Online "ATBDs"

V3 Product	Descriptions					
NRB	Lidar signals; volume depolarization ratios; diagnostics					
CLD	Cloud heights; thin cloud extinction and optical depths; cloud phase					
AER	Aerosol heights; extinction, backscatter, and aerosol depolarization ratio profiles; lidar ratio					
PBL	urface-Attached Mixed Layer Top and estimated AOD					
Product File Formats						
Formats	MPLNET V3 products are NETCDF 4, CF compliant files. Subsets for each product may be selected to reduce file sizes.					

Version 3 Product Levels

- Aligned with new AERONET L1.5 (QA in NRT)
- All L1 and L1.5 products available in NRT (< 1 hour) via automated data transfer and processing system
- New, standard QA flags in all products
- NRT QA screen applied at L1.5, final QA at L2
- L3 products in development (created from L2 data)

Version 3 Variable Confidence Flags

- New for Version 3, in all products
- Based on maturity of variable algorithm and QA flags

Values	Meanings			08	lance			the dete	lad flag data
	ignore			18	no problems	• •	All OF	the deta	med hag data
	data aviste			28	2C < temperature dissistion from set point <= 5C		summ	arized i	n final OA flac
	data_exists			48	temperature deviation from set point > 50		Summ		n nnar QA nag
	Gasa_masang			AB	no. set point		This f		reight forward
a indicating it	elastic signal data calibrations were p	t applied		168	measurement_fault		This h	ag is ca	rried forward
lues	Meanings						retrie	ved proc	lucts to descri
ign	200		flag_temp_detecte	or: flag indicati	g possible detector temperature problems for elastic signal data quality assurance		qualit	· ·	
al	calibrations_applied			Values	Meanings		quant	у.	
dea	dtime_calibration_missing			0B	ignore				
dar	kcount_calibration_missing			1B	no_problems				↓
afte	rpulse_calibration_missing			2B	2C_<_temperature_deviation_from_set_point_<=_5C				
ove	rlap_calibration_missing			48	temperature_deviation_from_set_point_>_5C			flag_ga: ov	erall QA Flag for NRB product
pol	arization_calibration_missing			88	no_set_point			Values	Mannings
				16B	measurement_fault			values	meanings
indicating if	elastic signai data temperature correcti	ons were not applied						OL	ignore
	Meanings		flag_temp_lase	er: flag indicati	g possible laser temperature problems for elastic signal data quality assurance			1L	no_problems
prore				[Values Meanings			2L	flag_calibration_I0
Liempera	ure_corrections_applied				0B ignore			4L	flag_energy
veriap_terr	perature_correction_missing			[1B no_problems			81.	flag temp box
olarization	temperature_correction_missing				2B placeholder			101	Bag tomp detector
her_tempe	ature_correction_missing			[4B placeholder			10L	nag_temp_detector
etector_ter	nperature_correction_missing				BB no_set_point			32L	flag_temp_laser
andow_ten	perature_correction_missing			L	16B measurement_fault			64L	flag_temp_flc
								128L	flag_temperature_correction
ssible laser	energy problems for elastic signal data q	anny assurance	flag_temp_flo	: flag indicatin	g possible FLC temperature problems for elastic signal data quality assurance				
10	weatings				Values Meanings				
ne probleme					0B Ignore				T
. < energ	deviation from set point <= 20%				1B no_problems				
rgy deviat	on from set point > 20%				2B placeholder				
set_point					4B placeholder				
asurement	fauit				BB no_set_point				
				L	16B measurement_fault				
		Low	4		Pacaruad for variables that are new an	d roquiro more	ctudu to	olovato co	ofidonco
		LOW	4		Reserved for variables that are new an	u require more	study to	elevate col	indence
		Fail	8		Data fail QA screen, variable data repl	aced with NaN			

New data center developed with new infrastructure and interoperability

Entirely new data center developed with new infrastructure

- Hardware: 72 cores, 60TB+ storage
- Full support for near-real time operations
- Data communications: now HTTPS
 - All telemetry from field sites
 - Data delivery to users
- Environment: Ubuntu Linux, mainly IDL based processing with some python and shell scripting
 - Move to ILD 8+, with modern language features
 - Improved and expanded MPLNET library functions, programs. Object oriented, version control (ops vs R&D)
- Innovative website design utilizing IDL via custom translator
 - Integrates our processing and database functions directly with HTML and CGI scripting
 - Rapid development of web based tools, apps, image browsing, APIs
 - Network operations managed with series of web based tools, from office/home/field
- Interoperability (automated inter-connections with other data centers, cloud computing)
 - APIs for site metadata, data download, data plot browsing/embedding
 - Working on support for WMO WIGOS metadata framework
 - GALION data center will ensure interoperability between global surface lidar networks

Data Center Tool Examples : Download Data Options

NASA Space Administra Goddard Space Filght Center	MPLNET The NASA Micro-Pulse Lidar Network
Home Data Data Srowse V3 Data V3 Data Status Browse V2 Data V2 Data Status Download Data Data Policy Project Sites Field Campaigns Product Information Version Information Version Information Version Information Ubb Services Operations Instrumentation Joining MPLNET Publications News Links About Us MPLNET Staff MPLNET Partners Partner Portal Staff Page	Devined Data: Test is a tool to download MPLNET data files. Users may also access our lata Portal to search our entire archive and download data files manually. Marcelonas: To use this tool, provide tha sign have, version, product evel and name, and data range. You may download one day or up to a month of data. Multiple day download sit will greatly reduce file sizes and download that are not allowed due to file size. Users may request subsets of our full data files. Test recommended as t will greatly reduce file sizes and download times. Test recommended as t will greatly reduce file sizes and download in test. Test of the Test data must follow our data policy. You are logged in as user: welten Test recommended as to subset. Version: Image: greatly file. Search Results: 1 data files were found Site: Santa Conz_Tenerife No QA Variables Select Variables to Subset Townload Ind Data: 2022 / 0@ / 01 / 14 / 14 / 18 No Filags Select Variables to Subset Townload Product: ER View Logs No Filags Select Variables to Subset Townload Search Data View Logs No Al variables Select Variables to Subset Townload Search Data View Logs Select Variables to Subset Townload Townload Search Data View Logs Sel

Data Center Tool Examples : Web Services

For ICAP centers:

we can provide NRT accounts (user/pass) for access to our standard products via the download API, and also develop custom products as needed (subsets, or different variable packaging).

V3 Status: active sites

V3 Officially Released Nov 5, 2021

- Major delays due to COVID
- Planned new hires in 2020 were not possible

Release Plan

- Go live with first batch of actives sites
- Begin working on remaining active sites
- Reprocess all older data
- Sites with long time record get priority
- Other data needed for publications/studies will get priority also
- Initiate delayed hiring Q1 2022

Further delays: 2022

 Ongoing issues with support contract at NASA Goddard have continued to prevent new hires (programmer/data analyst and technician)

				V3 R	leproo	cessir	ng Sta	atus:								
Sites:	Active	· · · · ·	Iroduc	: L1_	NRB	~	Time	Span:	2022	to	2022	v 8	Show F	ile Co	unt: 🗆	Go
No Data		Not Started Prelim Calibra	tions			Repro	cessin	g		Eva	luatin	g		Done	e	
	_	V3_L1_/RB Da	ta Sta	tus: 2	022 to	2022	(as o	f 2022	-10-1	4 21:58	3:43 U	TC)				
	#	Site	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Notes	
	1	ATTO-Camrina														
	2	Appalachiar_State														
	3	Barcriona														
	4	CARTEL														
	5	Cap San_Juan														
	6	Douliu														
	7	EPA-NCU														
	8	Fairbanks														
	9	GSFC														
	10	Izana														
	11	KAUST_Campus														
	12	Kaohsiung														
	13	King_George_Island														
	14	London-CDN														
	15	NASA_LaRC														
	16	OPAL														
	17	Princess_Sirindhorn_AstroPark														
	18	SEDE_BOKER														
	19	Sandy_Cove														
	20	Santa_Cruz_Tenerife														
	21	Songkhla_Regional_Observatory														
	22	South_Pole														
	23	Toronto_Downtown														
	24	UH_Liberty														
	25	UMBC														
	26	Xitun														

Major effort is recalibrating instrument overlap for all older data

Prelim V3 Results

MPLNET Level 3 Beta Testing: Monthly Diurnal Climatologies Example – 10 Year Climatology from GSFC

The climatologies provide better statistical results and are more regionally representative than L1.5 or L2 data.

Aerosol properties in cloudy scenes with MPLNET - AERONET

MPLNET Measurements of Light Precipitation Events: Detection and Retrieval of Properties

Importance of detection of light precipitation (below typical radar detection capability)

- Events are frequent, and cumulative totals factor into water cycle
- Contribution to aerosol wet deposition for frequent light rain events
- Aerosol processing at cloud base

Studies demonstrate ability to retrieve rain rate profiles with colocated disdrometer.

Profiles of rain drop size possible with additional lidar wavelength. (not shown)

(c) Rainfall Intensity on 22 April 2016

Figure 3. Vertically-resolved rainfall intensity computations at different measurement times for the GSFC MPLNET station on 22 April 2016. (a) MPL cross-polar channel signal; (b) cloud base height automatically retrieved by V3 L1 Cloud algorithm; (c) vertically-resolved rainfall intensities, computed with the analytical model solution using disdrometer data and V3 L1 cloud base height retrieval, from 5:27 p.m. UT to 5:54 p.m. UT.

Lolli, et al., JTECH, 2013. Lolli, et al, JTECH, 2017. Lolli, et al, Remote Sens., 2018.

Series of papers on proof of concept Retrieval of rain drop size, rain rate, evaporation rate

Lolli et al, Remote Sens., 2020.

Precipitation Detection Algorithm (future V3 product)

The NASA CALIPSO satellite is nearing end of life, with science operations expected to end in late 2023. Plans are underway to complete a last processing version (V5) to provide final data products from the mission.

CALIOP is a two wavelength (532, 1064 nm) backscatter lidar with polarization capability at 532 nm.

The aerosol products are dependent on determination of aerosol type by layer, and assignment of the aerosol lidar ratio in order to calculate extinction.

This can lead to large errors in retrieved extinction due to the lack of constraining observations.

V5 plans include a significant overhaul of the aerosol product.

Models, In situ, and Remote sensing of Aerosols

MIRA-WG Projects

- Particulate Matter from Lidars in Space (PMLS)
- Maps of Aerosol lidar ratios for CALIPSO (MAC)
- Tables of Aerosol Optics
- Harmonization of aerosol Assimilation Models and Retrievals (HAMR)

https://science.larc.nasa.gov/mira-wg/

MPLNET is providing lidar ratios from under-sampled

These are pre	V3 results
---------------	------------

	Pagion	Sito	Lidar Ra	atio (sr)	Aorosol Typos	Time Span	
Region		Site	AE < 1	AE > 1	Aerosor rypes	nne span	
		INDOEX-99 (from India)	43 +	- 12	Pollution	1 month	
	India, Indian Ocean	INDOEX-99 (from Middle East)	55 +	- 14	Pollution, Dust	1 month	
		Kanpur, India	39 +- 10	55 +- 14	Pollution, Dust	2 years	
		Skukua, South Africa		65 +- 10	Pollution, Smoke, Marine	1 month	
	Southern Africa	Mongu, Zambia	n/a	71 +- 6	Pollution, Smoke	1 month	
		Windpoort, Namibia	35 +- 13 46 +- 7.5		Dust, Pollution	1 year	
	East Asia	ACE-Asia Cruise (Sea of Japan, East China Sea)	55 +- 11	64 +- 9	Pollution, Dust, Marine	1 month	
		Singapore	n/a	52 +- 12	Pollution, Smoke, Marine	2 years	
	South East Asia	EPA-NCU (Northern Taiwan, from Pacific Ocean)	30 +	- 12	Marine, Pollution		
	South East Asia	EPA-NCU (Northern Taiwan, from China)		- 16	Dust, Marine, Pollution	7 years	
		EPA-NCU (Northern Taiwan, from SE Asia)	53 +	- 21	Smoke, Marine, Pollution		

WMO GAW Aerosol Lidar Observation Network (GALION):

A lidar network of networks organized through the WMO Global Atmospheric Watch (GAW) program. Welton and Lucia Mona (CNR, Italy) are co-chairs.

active GALION members

Objectives: provide long term, coordinated lidar network profiling of aerosol properties to support the following

- 1. climate research and assessment
- 2. air quality assessment and forecasting
- 3. Plume monitoring for special events
- 4. Satellite cal/val and synergistic research

Jeff's ICAP Take Home for Data Providers:

- Easy
 - Each network provides data, some open
 - Need better, coordinated search and discovery tools and links to data
 - Combined discovery tool with other types of observations (programmatic planning)
- Fast (NRT)
 - Some networks already provide NRT, others improving
- Characterized
 - GALION has established standards and each network has traceable history of peer reviewed calibration and processing methods.

Greenland Finland Russia United Kingdon Canada Ukrai Kazakhsta North Pacific North Atlantic Ocean Ocean Venezuela Colombia Papua New Guinea Tanzania Indian Ocean South South Pacific Atlantic Ocean Ocean South Africa New Zealand Southern Ocean Southern Ocean Active nactiv ANTARCTICA Google My Maps Planne

WMO GALION (Welton co-chair)

- EARLINET/ACTRIS
- ADNET
- LALINET
- NDACC* (sites not shown, also global)
- Current focus: building up North American Sites

MPLNET Sites & Other Lidar Networks: GALION

WMO GAW: SAG set objectives, requirements. OSCAR meta-database stores and codifies requirements 2 WIGOS Code

List

WMO Observing Systems Capability Analysis and Review Tool (OSCAR)

- Global metadata engine for WMO Integrated Global Observing System (WIGOS)
- Offers unique ability to provide integrated data searches across multiple programs, globally

•••	≅ oscar.wmo.int Č	d ø		£ 0	iscar.wmo.int Č	00	•••		iii oscar.wmo.int	Ċ	6 0
WMO - SDEWAS Caribbean ICAP M Image: Construction of the state of the stateo	ME MPLNET V NASA V EXHIGABE CANA/AO (1047 V CALIPSO V ADRONET I Cloud (0.1 V EC) Mont I New I Greeney 1740 Los OSCAR Chevrey Systems Conscription And Review Tool	I Stor Vendview (Apha) >> ++ I Second Peetack Lapin Market	Image: WARD - SDSWARS Cambineen ICAP A Image: WARD - SDSWARS Cambineen ICAP A		al AO Olory - CALIPSO - AERONET Atox News G Consenting Systems Capability Analysis and Review Tool	ICloud DL ← EOSDIS Worldview (Algha) → + Proc Links - Boger Pentance Logn Proc Links - Boger Pentance Logn Proc Links - Boger Pentance Logn Proc Links - Boger Pentance Pentace Pentance Pentance Pentance Pentance Pentance Pent	III WAND - SOSWAS Caribbean ICAP M	ME MPLNET + NASA + EarthCl	ARE CAIVIN AO Olory + CALIPSO + AO	RONET ICloud IDL + EOSDIS World	ew (Alpha) >> +
Builds access Bairs action report by: Without action faite the Country Type Country Observed variable Discred variable	Webset of Schedure Schedur	a statore and platforms. For nous	Station Instrument. Contact Bibliographic Riefennoce	Hanapage> Band+> Station search	Al O Ary Exists a declared Ary Exists a declared Ary Exists a declared Ary Exists Ary Exists	aporting statu: bplotsever statue bplotseve	•	Cor Marine M	A Constraint of the second sec	Re R	
	2024-0F-19 Molecowaro un 30.07.2020.21 (20.2020) Due to transimour un VE as application of the secolate on 20.05.2020 bet We applique for any inconvenience.	www.2000 and 100 UTC.		Program / reterns atilization @ WMO Region / Country @ Organization @ Unitate zone @ Geographic coordinates: @	GALION EARLINET, ADNet, LALINET, OIS- GALION EARLINET, ADNet, LALINET, OIS- Latitud Langitude from Latitud Fisher, Medars	UNAC MPLAT II K		40000 C C C C C C C C C C C C C C C C C	antry	C YMX0 0 Mupber 0 OpenSheetAkp Imp 2 Const 56,5841*C 2 Const 56,5841*C Develop: 2960 28,500*V 10,4953*W Develop: 2970 28,500*V 10,4953*W Develop: 29,57 29,500*V 10,4953*W Develop: 29,57 29,500*V 10,4953*W Develop: 29,57 29,500*V 10,4953*W Develop: 29,57 20,500*V 10,4953*W Develop: 29,57 20,500*V 10,222*C Develop: 29,17 20,550*V 10,222*C Develop: 29,17 20,550*V 10,222*C	Actions Actions Actions Actions Actions A A A A A A A

WMO GAW: SAG set objectives, requirements. OSCAR meta-database stores and codifies requirements 2 WIGOS Code

Remote sensing and aerosol metadata and vocabulary were poorly maintained WIGOS Code List: http://codes.wmo.int/_wmdr

Observing Methods Code List: Fixed Lidar Entries

Name	Notation \$	Description	Types 🕴	Status 🖗
Backscatter lidar	341	Elastic backscatter light detection and ranging (lidar) typic	Concept	stable
Differential absorption lidar (DIAL)	335	Light detection and ranging (lidar) with differential absorpt	Concept	stable
Doppler wind lidar	142	Light detection and ranging (lidar) with Doppler capability (Concept	stable
High spectral resolution (HSR) lidar	342	Light detection and ranging (lidar) with high spectral resolu	Concept	stable
Integrated path differential absorption (IPDA) lidar	320	Light detection and ranging (lidar) with integrated path diff	Concept	stable
Polarized lidar	343	Light detection and ranging (lidar) capable of determining th	Concept	stable
Raman lidar	143	Light detection and ranging (lidar) with Raman capability, ty	Concept	stable

Observed Variable Code List: Added Missing Variables

Aerosol layer height	12162	Height of vertically localized aerosol layer above sea level	Concept	stable
Mixed layer height	12163	Height above the surface to which atmospheric properties (win	Concept	stable
Height of the top of the PBL	12168	Height of the surface above ground separating the planetary b	Concept	stable
Aerosol type	12169	Selection, out of a pre-defined set of aerosol classes, that	Concept	stable

Observed Variable Code List: Renamed Aerosol Vars, Cleaned up

Hygroscopic particle size growth factor	12155 Defin	itions factor describing the particle equivalent spherical	Concept	stable
Particle effective diameter	12161	The area weighted mean diameter of the aerosol particles.	Concept	stable
Particle effective radius	362	The area weighted mean radius of the aerosol particles.	Concept	stable
Particle light absorption coefficient, PM1	316	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle light absorption coefficient, PM10	317	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle light absorption coefficient, TSP	318	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle light backscatter coefficient	12159	The fraction of incident radiative flux scattered backward at	Concept	stable
Particle light extinction coefficient	12145	A measure of light attenuation due to scattering and absorpti	Concept	stable
Particle light hemispheric backscatter coefficient	12158	The fraction of incident radiative flux scattered into all ba	Concept	stable
Particle light hemispheric forward scattering coefficient	12160	Incident radiative flux scattered into all forward angles, i	Concept	stable
Particle light scattering coefficient, PM1	322	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle light scattering coefficient, PM10	323	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle light scattering coefficient, TSP	324	A measure of light attenuation due to absorption by aerosol p	Concept	stable
Particle mass concentration (size fractionated)	367	Mass of particles per unit volume of air, size fractionated	Concept	stable

International GALION Data Center Working Group formed in 2021

Goal build a data center to provide information, search and discovery tools, links to network data, and eventually applications (AQ, volcanic monitoring, etc)

- Easier access to lidar network data
- Programmatic Planning
- Search & Discovery tool based on WMO OSCAR database
- Includes joint search of non-GALION networks and other filters
- Working group composed of members from all GALION networks
- I've spent several months trying to setup a new NASA AWS account for GALION
 - Finally getting close as only NASA can

GALION Search Page: Test (proof of concept)

Operations:

- Complete Planned Sites
- Maintain Forward-Processing
- Continue V3 Reprocessing of all remaining sites
- Complete development of Level 2 & 3 products
- Develop V4 Products/Code. Planned release year 4-5
 - Improvements to existing algorithms
 - official release of precipitation product
- Continue network expansion
- New Hires

Partnerships & Synergies: WMO & GALION

- Ongoing efforts to align with WMO world data centers and operational centers (GMAO, ECMWF, etc)
- Welton WMO Team assignments: ET-ACDM team, Ad-hoc AC vocabulary team, Pan-AM SDS-WAS regional steering committee
- Complete initial phase of GALION data center
- GALION
 - revive other working groups
 - Revive North American Ceilometer/Lidar Working Group
- New: Coordinate and provide PBL observations from surface networks

Science:

- Climatological Cirrus Forcing Studies: extend across V3 archive
- Aerosol in Cloudy Skies: large scale investigation of aerosol properties in cloudy scenes with MPLNET AERONET
- Lidar Ratio Study: Joint MPLNET, Airborne HSRL, CALIPSO, and EarthCARE project under MIRA to improve lidar ratio lookup tables for final CALIPSO processing and EarthCARE/AOS support
- PBL DSI Proposal Support
- EarthCARE cal/val (funding from Lewis et al USPI project)

Data Center Interoperability:

- Integrate MPLNET back into AERONET synergy tool (V3)
 - Our current APIs provide what is needed
- Data DOI: requirement going forward
 - Issues with process & data licenses
- Cloud Computing
 - Support for applications that can utilize our API infrastructure
 - We do not currently offer remote data retrieval, only file download Example, no OPenDAP or AWS access capability
 - I am investigating moving MPLNET to AWS, either the entire data center or just provide a data bucket
 - We are already backing up entire data center to AWS: \$3000/yr