

GEOS Neural Network Retrieval for AOD Data Assimilation

Patricia Castellanos, Arlindo da Silva Dark Target & Deep Blue Teams NASA Goddard Space Flight Center

Comparison of MODIS DT & DB AOD Retrievals

- Biases between datasets can propagate in the model forecast and lead to artificial time variability.
- The AOD data assimilation problem requires a homogenized AOD observing system across different platforms

Empirical Retrievals

- f is a continuous function that maps S to G
- Represent *f* with a <u>mathematical function</u> that contains a set of empirical parameters, A
- A are determined from a training dataset of pairs of *G* and *S* <u>observations</u>.
- Training empirically captures physical relationships and tunes away calibration issues.

- F is a <u>physical model</u> derived from first principles (e.g. radiative transfer model)
- **F** is not easily inverted
- The objective of the retrieval algorithm is to search for a G* that minimizes ||S – F(G)||
- Product quality affected by calibration issues.

ICAP Meeting Opatriola. castellanos@nasa.gov

Observations

Satellite Sensor Observation:

MODIS MOD04 /MYD04 Level 2 Reflectance

- Cloud masked, quality controlled, 10 km data
- Deep Blue Land
 - □ 3 channels over bright surfaces
 - 412 nm, 470 nm, and 670 nm

Dark Target Land

- 9 channels over dark surfaces
- □ 412-2100 nm

Geophysical Parameter of Interest:

440, 470, 550, 670, 870 nm AOD

- Aerosol Robotic Network (AERONET) observations of AOD
 - □ Global network of sunphotometers
 - 15 minute sampling
 - Low uncertainty (±0.01)

- Dark Target Ocean
 - □ 7 channels over ocean
 - □ 470-2100 nm

ICAP Meeting Opatricia. castellanos@nasa.gov

MODIS-AERONET Data Pairs

□ 20 years of data (2000-2021)

Additional Data Screening

- Outlier removal
- □ Cloud Fraction < 0.7
- Used MERRA-2 to "balance" the dataset by aerosol type
 - Dust
 - Smoke (Black Carbon + Organic Carbon)
 - Sea Salt
 - Sulfate

GEOS NNR for AOD

MODIS OBSERVATION

AUXILIARY DATA

8

9

ICAP Meeting October 2022

870 nm AOD

Testing at Specific Sites

470 nm AOD

440 nm AOD

1.2 0.7 NNR • DT-0 DT-0 DT-0 • DT-O ٠ 0.6 NNR NNR NNR NNR 1.0 -0.8 1.0 0.6 0.5 0.8 0.5 0.8 0.6 0.4 AOD AOD 0.4 OV AOD Retrieved , 0 ਨੂ 0.6 σ σ ed Retrieve c.0 Retriev Retriev Retrie 0.4 0 Orig RMSE=0.09 Orig RMSE=0.09 0.2 Orig RMSE=0.09 Orig RMSE=0.08 NNR RMSE=0.05 NNR RMSE=0.05 NNR RMSE=0.04 NNR RMSE=0.05 NNR RMSE=0.03 0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.6 0.8 1.0 0.2 0.4 0.5 0.3 0.0 0.2 0.4 1.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.1 0.3 0.6 0.7 0.0 0.1 0.2 0.4 0.5 0.6 AERONET AOD AERONET AOD AERONET AOD AERONET AOD AERONET AOD Terra DT-LAND Beijing-CAMS 440 nm AOD 470 nm AOD 550 nm AOD 660 nm AOD 870 nm AOD 3.0 NNR • DT-L • DT-L • DT-L NNR ٠ • 1.2 NNR NNR NNR 1.75 2.5 2.5 2.0 1.0 1.50 2.0 2.0 00 ^{1.25} Retrieved AOD 1.2 40D 40D AOD 00 I.5 Retrieved , 9.0 9 1.00 8 1.5 0 Retriev 0.72 Retrie 1.0 Retri 1 (1.0 0.4 Orig RMSE=0.20 NNR RMSE=0.14 Orig RMSE=0.23 Orig RMSE=0.19 0.50 NNR RMSE=0.18 NNR RMSE=0.17 NNR RMSE=0.12 NNR RMSE=0.09 0.5 0.5 0 0.25 0.0 0 0.0 0.00 0.0 0.5 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.2 0.4 0.6 0.8 1.0 0.0 1.0 0.0 0.0 1.2 0.0 AERONET AOD AERONET AOD AERONET AOD AERONET AOD AERONET AOD

Terra DT-OCEAN Shirahama

550 nm AOD

660 nm AOD

AOD Spectral Dependence

AOD Spectral Dependence

SODDARD

AOD Spectral Dependence

AOD Spectral Dependence

NNR ALL AOD 20160801

MOD04 ALL AOD 20191201

ICAP Meeting October 2022

Transition to DB & DT Applied to VIIRS

19

Summary and Outlook

- □ The NNR provides a way to homogenize the AOD observing system for data assimilation
- A NNR for VIIRS, GOES-16 and AHI-8 will be developed using the same methodology as the MODIS-NNR
- JEDI-based aerosol analysis system supports new multi-wavelength NNR AOD
 - may expand wavelength range to 340–1020

Target Aerosol Observing System in GEOS

Summary and Outlook

- Innovate the training methodology to give probabilistic predictions
 - e.g. ensemble learning, gaussian process learning, deep evidential regression
 - Benefits: provides quantitative uncertainties of the predictions that can be used in the aerosol assimilation

