

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC Update

J. Escribano, E. Emili, and the Atmospheric Composition Group

8 November 2023

ICAP Darmstadt 2023

Earth Sciences Department

Environmental modelling and forecasting using process-based and artificial intelligence models, with a particular focus on weather, climate and air quality. This includes transferring solutions to support the main societal environmental challenges through data applications

lacional de Supercomputación

• Four ICREA, closer link to local universities

The BSC Atmospheric Composition group (Nov. 2023)

Understand, constrain and predict the spatiotemporal variations of atmospheric pollutants across scales along with their effects upon air quality, health, weather and climate

About **30** people working on air quality, emissions, atmospheric chemistry and aerosols.

Model and Tool developments

Guevara et al. (2019, GMD) Guevara et al. (2020, GMD) Guevara et al. (2021, ESSD)

Badia et al. (2017, GMD) Peng et al. (2019, QJMRS) Klose et al. (2021, GMD)

Ensemble based Data Assimilation system

LETKF DA

Di Tomaso et al. (2017, GMD) Escribano et al. (2022, ACP) Di Tomaso et al. (2022, ESSD)

GHOST

CALIOPE-Urban Street-scale dispersion model

Benavides et al. (2019, GMD) Benavides et al. (2021, ERL) Rodriguez-Rey et al. (2021, TR-RES) Rodriguez-Rey et al. (2021, STOTEN)

Providentia

Dynamic/flexible evaluation system

Atmospheric iron cycle in EC-Earth

EC-Earth3-Iron

Myriokefalitakis et al. (2021, GMD) Bergas-Masso et al. (2023, Earth's Future)

+ Iron Developements

Model Output Statistics

Including machine learning

Petetin et al. (2020, ACP) Petetin et al. (2022, ACP)

In collaboration with CES, ESS and CVC

Forecasts, reanalysis and impact assessment

WMO Dust Regional Centers

Dust forecasts and and renalysis

CALIOPE Forecast system

ICAP global aerosol ensemble

Copernicus CAMS Europe air quality

In collaboration with CES and ESS

Barcelona Dust Regional Center MONARCH operational dust forecasts

V1.0.0 (June 2020-2023):

- Introduced MODIS DB dust preferential sources atlas (Ginoux et al. 2012)
- Switched dust emission scheme to Ginoux et al. 2001 [G01]

V2.1.0 (since June 2023):

- Introduced spheroid particles to compute optical properties (and PMs)
- Activated online coupling of dust radiation with meteorology

https://dust.aemet.es/

Evaluation against AERONET coarse AOD (O'Neill) in 2021

0.1121

		Blas	RIVISE	IVINIVIB	FGE	r	
V1.0.0)	-0.01	0.09	-101.2	119.9	0.79	
V2.1.0)	-0.01	0.08	-97.7	118.1	0.80	

0.1444

0176

0 2089

	Bias	RMSE	MNMB	FGE	r
V1.0.0	0.02	0.13	-17.4	61.4	0.70
V2.1.0	0.01	0.12	-16.1	59.3	0.71

2 <u>1</u>		Bias	RMSE	MNMB	FGE	r
	V1.0.0	-0.10	0.23	-53.9	69.8	0.77
_	V2.1.0	-0.12	0.25	-60.2	73.9	0.76

E. Emili, E. Karnezi

MONARCH ICAP upgrades for early 2024

Marenostrum4 to Marenostrum5 --> upgrade of the MONARCH - ICAP forecast system

- Climatological gaseous precursors –> full online CB05 Chemistry
- SOA (antro, fires), Nitrates
- Emissions (coupled with HERMESv3) : HTAPv2 -> CAMS_GLOBv4.2
- TBD: horizontal resolution / computing resources (preparation for AOD Ens DA)

Dust emission upgrades [Klose et al., 2021 GMD]:

- 4 dust schemes available: from strongly simplified to physics-based parameterizations
- Static and dynamic roughness length dependencies upon emission
- Size-dependent index of refraction based on mineralogy
- Ellipsoidal particle shape in optical properties

Copernicus Programme: Regional Air Quality Products

Operational Europe-wide Air Quality Service based on:

Global and European emission inventories: CAMS2_61

European

- To provide gridded distributions of anthropogenic (global and Europe) and natural emissions (global only) for reactive gases, aerosols and greenhouse gases.
- Monthly, weekly and diurnal temporal profiles will have to be delivered, so that variations can be accounted for in the CAMS systems.
- Provide support and guidance to the CAMS global and regional production chains in the implementation and evaluation of the new emission products developed.

GHOST: Globally Harmonised Observations in Space & Time

CAMP: Chemistry Across Multiple Phases - GPU solver

• Scalable kinetics treatment for chemistry in multi-phase models

Centro Nacional de Supercomputación

- Change the chemical mechanism *without recompiling*
- Run with *multiple GPUs* per CPU. The speedup close to linear with the number of GPUs.

Dawson et al. (2021 GMD)

christian.guzman|mario.acosta|oriol.jorba@bsc.es

The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe

A complete and consistent, four dimensional, regional reconstruction of desert dust in a recent decade (2007-2016) [in process: 2017, 2018]

- → Unprecedented high resolution: 0.1° x 0.1°
- → Specific dust observational constraint
- → Uncertainty estimates in the reanalysis output
- → Link to specific air quality and climate services
- → **FAIR** data guidelines

Open access. To request access to the repository, please contact reanalysis.access@bsc.es Dataset PID: http://hdl.handle.net /21.12146 /c6d4a608-5de3-47f6a004-67cb1d498d98 License: Creative Commons Attribution 4.0 International (CC BY 4.0). License url: <u>https://creativecommons.org</u> /licenses/by/4.0/

Di Tomaso et al., 2022, ESSD, doi:10.5194/essd-14-2785-2022

Assimilation Dust AOD + lidar : "Godzilla" June 2020 case

with Enza Di Tomaso

Simulated coarse DOD at 550 nm and AERONET SDA coarse AOD at 500 nm

The information provided by the different retrievals is not redundant

The two sensors CALIOP and VIIRS work synergistically when assimilated together

The assimilation in all the experiments brings the model simulations closer to AERONET retrievals

Research on dust mineralogy and its impacts on the Earth System

MONARCH has been developed to explicitly represent dust mineralogy, with the aim of improving our knowledge on its impacts in the Earth System (e.g. interaction with radiation, atmospheric chemistry).

2 state of the art Mineralogy Atlases:

Claquin et al. (1999), Nickovic et al. (2012) 8 minerals: Illite, smectite, kaolinite, quartz,

feldspars, calcite, gypsum and hematite (iron oxides).

Journet et al. (2014) 12 minerals: Illite, smectite, kaolinite, vermiculite, chlorite, mica, quartz, feldspars, calcite, gypsum, hematite and goethite.

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

Mineral fraction at surface conc. (MONARCH 2006-2010, %w)

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

Evaluation against observations (following Perlwitz et al. 2015)

M. Gonçalves Ageitos, et al., 2023 ACP

Dust direct radiative effect: mineralogy

Di Biagio et al. (2020)

- Di Biagio:
 - Reduced DRE in SW with inclusion of large particles
- MONARCH:
 - Similar DRE reduction with JRE INT
 - Reduced DRE in DUST run compared to CLQ INT

- Additional Experiments to test:
 - Internal mixing with goethite 50% imaginary RI
 - Runs with partly external/partly internal mixing

Luka Ilić

Nitrate formation on coarse particles

- Implementation of nitrate heterogeneous chemistry mechanisms in the MONARCH model
- Sensitivity to dust and sea salt alkalinity and reversible uptake of nitrate

New mineralogy maps from NASA EMIT

Montmorillonite (Na,Ca)0.33(AI,Mg)2Si4O10(OH)2*nH2O

-Gypsum CaSO4.2H2O

Calcite CaCO3

-Hematite Fe2O3

——Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] -Chlorite (Ma,Fe)3(Si,Al)4O10(OH)2-(Ma,Fe)3(OH)6 -Vermiculite (Mg,Fe+2,AI)3(AI,Si)4O10(OH)2*4H2O 0.8 0.6 Reflectance 0.4 0.2 400 700 1000 1300 1600 1900 2200 2500

VSWIR Spectra of Dust Source Minerals

—Kaolinite Al4[Si4O10](OH)8

-Dolomite CaMg(CO3)2

-Goethite FeO.OH

The FMIT instrument is measuring from the ISS since July 14, 2022.

Dust Minerals have distinct spectral signatures

Wavelength (nm)

Target mask for EMIT retrievals covering arid land regions

Level 3 products – map of 10 (+2) minerals to be used within ESMs

(Green et al. 2020)

Constraining spatio-temporal variations in dust emission at global scale with ensemble data assimilation of satellite optical depth retrievals

Verification with filtered AOD from AERONET (ång<0.3, d₁₀₂₀>0.15) : G2001, Total DOD DA

Results: Time averaged dust optical depth and dust emissions

Bias analysis Corr. analysis RMSE control (RMSE_analysis Number obs Bias control Correlation - RMSE control control -Corr. control Dust Assim.)/RMSE control DOD emission Total Ginoux 2001 Coarse Kok 2014 Total Coarse Shao Total 2004 Coarse Barcelona Supercom BSC Center 150 Centro Nacion -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 0.0 0.0 0.2 0.4 0.0 0.2 0.4 -1.0-0.50.0 0.5 1.0 -0.4 -0.20.0 0.2 0.4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.2 0.4 100 101 bias_fi bias_a corr_fr corr absdif rmse_fr rmse_reldif

Verification with filtered AOD from AERONET (ång<0.3, d₁₀₂₀>0.15)

constraining dust emissions

- → Better agreement of analysis AOD with dust filtered ground-based AOD from AERONET with respect to their controls.
- → It is able to constrain emissions in scale of hundreds of km
- → Dust AOD and emission changes depend on the emission scheme <u>and</u> on the assimilated observation: Need better constrain and QA on assimilated observation
- → Unresolved tasks: LETKF ensemble perturbation length scale determines the correction length scales-> Multi-scale constraints, etc

Why to continue ?

- Emission estimates for better constraint total dust optical depth
- Regional emission constraints to better estimate airborne mineral dust mineralogy
 - New data from EMIT
 - Meaningful sensitivity of DRE to dust mineralogy, total dust load and size distribution.
 - Impact of mineralogy on Dust-cloud interactions (e.g. INP)
 - Nitrate formation sensitivity to dust mineralogy
- Assimilation with variables related to emissions in the control vector to improve the accuracy of the forecasts
- Can detect systematic errors in emission schemes or input data

Barcelona Supercomputing Center Centro Nacional de Supercomputación

SUPERCOMPUTACIÓN

European Research Area for Climate Services

Questions?

and thank you!

jeronimo.escribano @ bsc.es