

ž

औ

K

四

GEFS version 13 – Aerosols:

Increasing realism of NOAA's flagship Global Ensemble Forecast System

NATIONAL WEATHER SERVICE

Raffaele Montuoro, Bing Fu, Neil Barton, Partha Bhattacharjee, Li Pan, Yuejian Zhu (ret.), Eric Sinsky, Jeff McQueen, Avichal Mehra, Fanglin Yang, Ivanka Stajner – NWS/NCEP/EMC **Barry Baker – OAR/ARL**, Li (Kate) Zhang – OAR/GSL, Gregory Frost – OAR/CSL The GFS development team & the PSL ensemble team, NASA/GMAO

Air Quality Forecasters Workshop, October 12-13, 2023

्यौ

K

四

12

Roadmap

Operational: GEFSv12-Aerosol

- One member of the Global Ensemble Forecast System (GEFS)
- One-way coupled Atmosphere-Aerosols-Waves system
- 5-day global aerosol predictions

Target: GEFSv13

- Two-way coupled, Atmosphere/Aerosols/Land/Ocean/Wave/Sea Ice
- Prognostic aerosols included in all GEFS members
- Aerosol-radiation feedback impacts meteorology
- 35-day global aerosol predictions

Base Model:

ž

え

B

12

Ś	GFS Model	FV3 (Finite-Vol Cubed-Sphere)							
	Resolution	C384 (25km) L64 (hybrid)							
	Physics	GFSv15 packages (GFDL MP)							
ł	Boundary forcing	NSST + 2-tiered SST							
	Non-Atmos Coupled Components	Waves (one-way) Aerosols (one-way), one member only							
>	Ensemble Methods:								
	Initial perturbations	EnKF -f06							
	Model uncertainty	5-scale SPPT and SKEB							
10	Members	Control + 30 pert members							
	Forecast Details:								
	Daily frequency	00, 06, 12 and 18UTC							
٢	Forecast length	16 days, 35 days (00UTC)							
	Other Details:								
2	Reforecast	30 years (1989-2018)							
1	Implementation	September 2020 (5 years of V11)							

GEFS version 12

Geosci. Model Dev., 15, 5337–5369, 2022 https://doi.org/10.5194/gmd-15-5337-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Development and evaluation of the Aerosol Forecast Member in the National Center for Environment Prediction (NCEP)'s Global Ensemble Forecast System (GEFS-Aerosols v1)

Li Zhang^{1,2}, Raffaele Montuoro^{1,2,7}, Stuart A. McKeen^{1,3}, Barry Baker^{4,5}, Partha S. Bhattacharjee⁶, Georg A. Grell², Judy Henderson², Li Pan⁶, Gregory J. Frost³, Jeff McQueen⁷, Rick Saylor⁸, Haiqin Li^{1,2}, Ravan Ahmadov^{1,2}, Jun Wang⁷, Ivanka Stajner⁷, Shobha Kondragunta⁹, Xiaoyang Zhang¹⁰, and Fangjun Li¹⁰

- Single GOCART-based aerosol component
- Substantial improvement over former operational NGACv2 system in both composition and variability of aerosol distributions

Other Details:		Species	Ν	Obs. median $(mg m^{-2})$	GEFS-Aerosols MMO	NGACv2 MMO	GEFS-Aerosols r coefficient	NGACv2 r coefficient
Reforecast	30 years (1989-2018)	Sulfate	153 146	0.58	0.72		0.63	
Implementation	September 2020 (5 years of V11)	BC Dust (< 3 µm diam)	152 130	0.011 0.038	3.35 0.54	46.37	0.78	0.39

	Base Model:		GEES version 13
ජි	GFS Model	UFS Coupled	
	Resolution	Atmos/Aerosol/Land: C384 (25km) L127, Ocean/Ice: 0.25° tripole, Wave 0.25° lat/lon	l arget configuration
ज्रे.		CCPP (saSAS, Thompson-MP, sa-TKE-EDMF,	• Built on the Unified Forecast System (UFS)
	Atmos Physics	uGWD, NOAH-MP)	• UFS-Aerosols component embeds NASA's
	Boundary forcing	N/A	2 nd -generation GOCART model
×>	Ensemble Methods:		 Updated dust scheme (FENGSHA)
	Initial perturbations	EnKF f00 (early cycle)	 Aerosol-radiation feedback enabled
哭	Model uncertainty	Atmos: 5-scale SPPT, SKEB, SPP, CA; Ocean: 5-scale oSPPT and ePBL	 Prognostic aerosols included in all 31
	Members	Control + 30 pert members	members
	Forecast Details:		 Global aerosol predictions up to 35 days
⊿	Daily frequency	00, 06, 12 and 18UTC	• First-ever aerosol data assimilation (GDAS-
	Forecast length	16 days, 35/48 days (00UTC, Mon & Thu)	Aero v1)
	Other Details:		
<u>51</u> .28	Reforecast	30 years (1994-2023)	
	Implementation	Q1 FY2026	

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

Environmental Modeling Center 4

Roadmap – Development

- Development performed through sequential Ensemble Prototypes (EP) consisting of 10 perturbed members + control
- EPs based on GFS prototypes
- Prognostic aerosols introduced in EP4 with aerosol-radiation feedback (EP4a)
- EP4a aerosol configuration based on early experiments for UFS coupled prototype 8 (P8)
- EP4b updated aerosol component with dust bugfix and scaling of biomass burning

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Centers for Environmental Prediction 5830 University Research Court College Park, MD 20740-3818

> Office Note 510 https://doi.org/10.25923/knxm-kz26

Description and Results from UFS Coupled Prototypes for Future Global, Ensemble and Seasonal Forecasts at NCEP

Lydia Stefanova¹, Jessica Meixner², Jiande Wang¹, Sulagna Ray³, Avichal Mehra², Michael Barlage², Lisa Bengtsson⁴, Partha S. Bhattacharjee¹, Rainer Bleck⁵, Arun Chawla², Benjamin W. Green^{5,7}, Jongil Han², Wei Li¹, Xu Li¹, Raffaele Montuoro², Shrinivas Moorthi², Cristiana Stan⁶, Shan Sun⁵, Denise Worthen¹, Fanglin Yang², Weizhong Zheng¹

ž

औ

K

DOD

1

Roadmap – EP4a experiments

- 35-day, free forecasts
- Mini-set

ž

औ

x

四日

12

- 16 cases: 8 summer and 8 winter cases (2018)
 - Winter: 20180103, 20180110, 20180117, 20180124, 20180131, 20180207, 20180214, 20180221
 - Summer: 20180801, 20180808, 20180815, 20180822, 20180829, 20180905, 20180912, 20180919

• Full set

- o 104 cases: Oct. 2017–Sept. 2019, Oct. 2020–Sept. 2021
- $\circ~$ Once per week (Wednesday 00 UTC), 11 members, out to 35 days

Roadmap – EP4a evaluation

- 1. Analysis of aerosol optical depth (AOD) and distributions
 - Compare AODs against NASA (MERRA-2) and ECMWF (CAMS) global reanalysis datasets
 - Compare surface distributions to AERONET data
- 2. Evaluation of aerosol impact on meteorology
 - Use standard GEFS metrics to compare EP4a to EP4:
 - 500 hPa height Anomaly Correlation (AC)
 - 500 hPa height Continuous Ranked Probability Skill Scores (CRPSS)
 - 500 hPa height bias
 - 850 hPa temperature bias
 - 850 hPa zonal wind RMSE
 - 250 hPa zonal wind RMSE
 - MJO

ž

औ

 \aleph

明

 $\mathbf{\Lambda}$

12

• Surface diagnosis

500 hPa Height – CRPSS

Ä

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

500 hPa Height & 850 hPa Temperature

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

ž

Zonal wind – 250 hPa & 850 hPa

Ä

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

औ

 \aleph

四

 $\mathbf{\Lambda}$

500 hPa Height 2017-2019 Average Anomaly Correlation

500 hPa Height Average AC	Free Forecast Period	EP4	EP4 + aerosols	Change
N. 4	Week 1	0.967	0.967	—
Nortnern Hemisphere	Week 2	0.656	0.646	-0.010 (-1.5%)
nemisphere	Week 3-4	0.378	0.368	-0.010 (-2.6%)
0.4	Week 1	0.961	0.962	+0.001 (+0.1%)
Southern	Week 2	0.584	0.601	+0.017 (+2.9%)
Temophere	Week 3-4	0.278	0.225	-0.053 (-19.1%)

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

500 hPa Height – Week 1

ž

Å

500 hPa Height – Week 2

ž

Å

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

500 hPa Height – Week 3-4

ž

EP4a evaluation summary

Aerosols

Dust and biomass burning overprediction

Atmosphere

- Improvements over EP4 in Week 1
- Mixed results in Week 2 improvement in SH, degradation in NH (500hPa height)
- Noticeable degradation in Week 3-4
- Slightly colder than EP4

12

ž

औ

K

明

EP4b – Aerosol updates

- Dust scheme (FENGSHA)
 - Corrected soil moisture (bugfix)
 - Improved surface inputs fixes for high latitude and non-permeable surfaces
 - Biomass-burning emissions
 - Scaled Quick Fire Emission Dataset (QFED) for consistency with 2nd-generation GOCART assumptions

12

ž

औ

K

明

500 hPa Height – CRPSS

Ä

850 hPa Height & 2m Temperature

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

EP4b – Preliminary results (control)

ž

औ

K

四

1

ž

Dust AOD Bias against CAMS (IC 20190605)

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

EP4b – Preliminary results (control)

ž

औ

K

明

1

Dust AOD Bias against MERRA2 (IC 20190605)

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

ž

औ

EP4b

ensemble

 \aleph

明

 \square

51 51 53

¥

Global AOD RMSE against CAMS(20190102-20190925)

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

AOD RMSE against CAMS(20190102-20190925)

Preliminary results from ensemble experiment

明

ž

औ

 \aleph

 \square

12

¥

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

EP4b – Preliminary results (control)

जैं।

R

明

 \square

212

Ä

औ

K

明

12

Comparisons to Aeronet

Overall comparisons to aeronet are good with the notable underprediction in the AOD mean in southern and central Asia

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

Comparison to Aeronet

. ज़ौ

ž

Ă

Department of Commerce // National Oceanic and Atmospheric Administration // National Weather Service

Environmental Modeling Center25

GRL

CNA ENA

WNA

NEU

MED

Cre

NAS

CAS TIB

										And	omoly	Correl	ation																	_					Inde	ex of A	greem	ent				_		_			
- A	0.61	0.68	0.13	0.49	0.35	0.56	0.4		0.31	0.44	0.37	0.58	0.24	0.64	0.61	0.42	0.31	0.31	0.55	0.44	0.45	0.49		- 0.6	IF - 0.	63 0	.64	0.44	0.58	0.49	0.61	0.51	0.46	0.48		0.44	0.56	0.42	0.6	0.59	0.52	0.47	0.55	0.59	0.43		0.55
week 1	0.63	0.67	0.14	0.48	0.33	0.56	0.4	0.37	0.28	0.45		0.6	0.21	0.65	0.6	0.42	0.37	0.33	0.52	0.45	0.49			- 0.5	week 1 - 0	62 0	1.64	0.44	0.57	0.48	0.61	0.51	0.44	0.46		0.43	0.56	0.4	0.61	0.59	0.52	0.48	0.56	0.58	0.42		0.55
Week 2	0.55	0.66	0.078	0.44	0.27	0.55	0.37	0.34	0.24	0.36	0.18	0.56	0.13	0.59	0.54	0.38	0.27	0.29	0.52	0.3	0.37	0.45		- 0.4 dnog	Week 2	61 0	.63	0.41	0.56	0.45	0.6	0.48	0.41	0.45	0.46	0.39		0.37	0.57	0.54	0.5	0.43	0.54	0.57	0.37	0.48	0.53
Week 3	0.52	0.66	0.063	0.44	0.28	0.52	0.35	0.35	0.24	0.33	0.23	0.56	0.12	0.56	0.56	0.37	0.27	0.29	0.53	0.39	0.38	0.43	-	- 0.2	veek 3	61 0	.63	0.42		0.46	0.59	0.47	0.41	0.46	0.45	0.39		0.37	0.56		0.5	0.42	0.54	0.58	0.4		0.53
Week 4	0.61	0.65	0.039	0.43	0.27	0.53	0.35		0.26	0.33	0.18	0.57	0.11	0.57	0.56	0.39	0.26	0.3	0.53	0.39	0.34	0.44	-	- 0.1	veek 4 -	62 C	1.62	0.41		0.45	0.6	0.47	0.41	0.47	0.46	0.39		0.38	0.56		0.5	0.42	0.54	0.58	0.38	0.49	0.53
	- ALA -	- ZW	MM	CAS -	AND	EAF -	- SAS	NA	- JRE	ED.	AAS -	IAU -	'EU	SAF -	- HPS	- SAS -	- NAS	SEA -	SSA -	TIB.	NAF -	- AN			A	A A	мz	CAM	CAS	CNA	EAF	EAS	ENA	GRL	MED	NAS	NÁU	NEU	SAF	SAH	SAS	sAU	SEA	SSA	тів	WAF	WNA
		4	0	Ŭ	Ŭ				Ū	Norma	alized I	Mean I	Bias (%	6)	01		07	•,			~	5														RIVI3											
Ы	32	-23	-33	-31	-18	-33	-26	-0.49	-25	-9.7	-9	-1.3	-19		2.5	-33	2.4	-48	-19	3.5	-23		- 0	5	₹ - 0.2	7 0.:	11 0	0.17	0.31		0.17	0.32	0.086		0.12	0.18	0.062	0.1	0.12	0.18	0.35	0.053	0.39	0.078	0.12	0.32	0.1
Week 1	30				-15	-36		2.6	-17	-5	-2.4	1.6	-15		5.1	-33	4.8	-47	-20	2.8				-10	C.2 - 0.2	7 0.:	11 0	0.17	0.31	0.13	0.17	0.32	0.088	0.12	0.12	0.17	0.06	0.11	0.11	0.18	0.35	0.048	0.39	0.079	0.12	0.32	0.11
Group Week 2	32	-23	-32	-31	-20	-32	-25	-1.1	-26	-8.7	-9.2	-1.6	-18	-12	5.5	-34	2.1	-47	-18	3.2	-21	-23		Group	7 - 0.2	8 0.:		0.17	0.32		0.17	0.33	0.089			0.19	0.063			0.19	0.36	0.052	0.39	0.079	0.13	0.34	0.11
Week 3	38	-23	-34	-31	-22	-33	-25	-3.6	-33	-12		-2.3	-21	-12	1.5	-34	2.3	-47	-18	6.6	-25	-25		-30 -30 Moot	еека - 0.2	8 0.:	11 0	0.17	0.32		0.17	0.33	0.088	0.12		0.19	0.063			0.18	0.36	0.051	0.39	0.078	0.13	0.34	0.11
Week 4	40	-24	-36	-32	-22	-30	-24	-4.3	-35	-15		-2.4	-23		-0.28	-34	1.3	-47	-18	3.3	-28			-40 V	Meek 4	7 0.:	11 a	0.17	0.32		0.17	0.33	0.089		0.12	0.19	0.063	0.11	0.12	0.18	0.36	0.054	0.39	0.078	0.13	0.35	0.11
	-Å-	- ZI	Ŵ	ŝ	IA -	4	Si-	- Al	- ,	à	S-	, D	à	Ę.	Ļ,	-SI	- D	- A	- Ăč	18-	μ,	- Al	_		АĹ	A AN	iz c	Ам	cás	cNA	EAF	EAS	ENA	GRL	MÉD	NÁS	NÁU	NEU	SAF	sÅH	sÁs	SÁU	SÉA	SSA	тів	WAF	WNA
																						_	- 0.1	100												REGIO	N										
AI	-0.04	9 -0.034	-0.063	3 -0.13	-0.023	-0.078	8 -0.088	30.0005	57-0.023	-0.015	-0.013	-0.0013	-0.027	-0.02	0.0057	0.15 0	.0016	0.15 -	0.018 0	.0046 -	0.11 -0	0.018	- 0.0	075					~	C E	800 CA	A R	2	Carrier	(Vo		2 North	20	in a c	hal						
Week 1	-0.04	5 -0.036	-0.059	9 -0.13	-0.02	-0.083	3 -0.094	4 0.003	-0.016	-0.0077	7-0.0034	0.0015	-0.021	-0.021	0.012	-0.15 0	.0032	0.15 -	0.019 0	.0037 -	0.11 -0	0.017	- 0.0 - 0.0	050				-63	201	ALA	En (\$	The second	GRL	שיל	N	EÛ	Ber	\$	NA	s ر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~					
Week 2	-0.04	B -0.034	-0.061	1 -0.13	-0.025	-0.074	4 -0.083	3-0.001	3 -0.024	-0.013	-0.013	-0.0015	-0.026	-0.018	0.013	-0.16 0	.0014	0.15 -	0.017 0	.0043	·0.1 ·	0.02	- 0.0	000						WN.		JA E	g≏ NA ⊣	7	м	ED ,	CA:		BE	EAS	9						
Week 3	-0.05	7 -0.034	-0.064	4 -0.13	-0.028	-0.075	5 -0.084	1-0.004	1 -0.03	-0.018	-0.017	-0.0022	-0.031	-0.018	0.0033	-0.16 0	.0015	0.15 4	0.017 0	.0087 -	0.12 -0	0.021	0. 0	0.025				0	<u>°N</u>			4	MZ		WAF	EAE	₹ <u></u> ۲	SAS		SEA							
Week 4	-0.06	1 -0.035	-0.069	9 -0.13	-0.029	-0.069	9 -0.08	-0.005	5 -0.032	-0.024	-0.017	-0.0024	-0.033	-0.018-0	.00063	·0.16 D.	00089	0.15 +	0.017 0	.0043 -	D.14 -C	0.022	0	0.075									SA			DAF	U	D	1	SAL	J (À					
	ALA	AMZ	CAM	CAS	cNA	EAF	EAS	ENA	GRL	MED	NAS	NÁU	NEU	SAF	SAH	SAS	sÁU	SEA	ssa	тів у	NAF 1	WNA	0	^{0.100})r	n //	Nat	iona	al L				M			0°	E						1	Mod	delin	ig Ce	enter	r 26

REGION

ter**26** 'y

- 0.6 - 0.5

- 0.5

- 0.4

- 0.4

- 0.35 - 0.30

- 0.25

- 0.20

- 0.15 - 0.10 - 0.05

Summary

ž

औ

K)

1

- GEFSv13 Development well underway.
- Early results show good agreement and on average no negative impacts on meteorology from inclusion of prognostic aerosols in weeks 1 -2
- Some negative impacts in weeks 3-4 but GEFSv13 prototype is better than the current operational GEFSv12

Fengsha - Updates (in a nutshell)

Update the drag partition to Chappel and Webb 2016

Actual T- contour

12

Draxler-de

NEW

Drag Partition

Drag Partition

- 2