Background animation from GMAO: GEOS-FP simulated CO June 2023

Peter Colarco¹ With contributions from: Allison Collow², Patricia Castellanos², Virginie Bouchard², Anton Darmenov², Amal El Akkraouri², Ravi Govindaraju², Sampa Das¹, Hushing Bian¹, Parker Case¹, Qing Liang¹, Ed Nowottnick³, and Arlindo da Silva²

¹Atmospheric Chemistry and Dynamics Laboratory, ²Global Modeling and Assimilation Office, ³Mesoscale Processes Laboratory

Update on the NASA GEOS modeling activities

National Aeronautics and Space Administration

- Update on GOCART2G and model products
- Recent and planned field campaign support
- Science snapshots
- Updates on data assimilation and fire emissions
- Outlook

GOCART2G Configuration

- with distinct optical properties
- Increase OA:OC ratio in line with recent airborne measurements (e.g., Atom)
- Inclusion of an ACHEM-driven SOA scheme for anthropogenic and biomass burning sources
- Inclusion of a HEMCO/MEGAN-driven biogenic SOA scheme
- Introduction of "point wise" source emissions for pyroCb inputs
- Update anthropogenic emissions to downscaled-CEDS emission inventory and input oxidant fields to MERRA-2 GMI (valid range of both is 1980 - 2019; padding outside years with endpoints)

Collow, A. B., Colarco, P. R., da Silva, A. M., Buchard, V., Bian, H., Chin, M., Das, S., Govidaraju, R., Kim, D., and Aquila, V.: Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS), Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-129, in review, 2023.

Separation of organic aerosol into "white" (anthropogenic) and "brown" (biomass burning) components

GOCART2G Validation

Collow, A. B., Colarco, P. R., da Silva, A. M., Buchard, V., Bian, H., Chin, M., Das, S., Govidaraju, R., Kim, D., and Aquila, V.: Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS), Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-129, in review, 2023.

GOCART2G Validation

Collow, A. B., Colarco, P. R., da Silva, A. M., Buchard, V., Bian, H., Chin, M., Das, S., Govidaraju, R., Kim, D., and Aquila, V.: Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS), Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-129, in review, 2023.

- GEOS Near-Real Time System
- Currently: Version 5.29.5
- ~12 km horizontal, 72 levels to ~80 km
- Legacy GOCART->transition to GOCART2G next year
- Aerosols are inline and radiatively interactive with meteorology
- Assimilation MODIS NNR and AERONET AOD at 550 nm
- 4x daily forecasts \bullet
- Inputs to ICAP MME

https://fluid.nccs.nasa.gov/weather/

GMAO Reanalysis Products

RRA-21C, will use GOCART2G, Hybrid 4D EnVar All Sky DA 2000 - present, 25 km resolution (MERRA-2 was 50 km) Product availability in 2024

Courtesy: Amal EL Akkraouri

Field Campaigns Supported - CPEX-CV

Courtesy: Ed Nowottnick

National Aeronautics and Space Administration

Field Campaigns Supported - ACCLIP

Courtesy: Qing Liang

Field Campaigns Supported - NASA ARCSIX

Ginoux Topographic Source Function

Flexpart Soil Source Function

Field Campaigns Supported - NASA ARCSIX

Ginoux Based Emissions

Flexpart Based Emissions

Improvements to Biomass Burning Aerosol

NASA ORACLES airborne data shows vertical variability in biomass burning aerosol distribution and absorption not reproduced in GEOS

We hypothesize a missing loss process (e.g., photochemical destruction of organics)-> Including an ad hoc loss process and adjusting optical properties improves fidelity

Improvements to Biomass Burning Aerosol **September 2016 Monthly Mean**

Model

OMI

Model - OMI

GEOS AI calculation:

1. GEOS aerosol profiles and assumed optical properties 2. OMI observation geometry and retrieved surface reflectance

Al is sensitive to aerosol height, amount, and spectral absorption

Updated model reduces the high bias in simulated Al over southern Africa

Das, S., Colarco, P., Bian, H., and Gasso, S.: Improved Simulations of Biomass Burning Aerosol Optical Properties and Lifetimes in the NASA GEOS Model during the ORACLES-I Campaign, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1311, 2023.

Challenges in Simulating Smoke Episodes

Early June 2023 Canadian smoke episode impact air quality in US NE

Forecasting is a challenge

- Meteorology
- Fire location
- Emission magnitude
- Vertical placement of emissions

GEOS near-real time system ("GEOS-FP") runs aerosol, CO and meteorological forecasts 4x daily at global 12 km resolution and assimilates meteorology and aerosol AOD

Research version shown here run at 25 km resolution with meteorology from GEOS-FP and assimilates aerosol AOD

Biomass burning emissions derived from near-real time MODIS fire radiative power products (QFED)

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 Aerosol Optical Depth

What do you know about emissions?

Valid: June 7, 2023

Replayed (Day-Of Emissions)

Replay to assimilated meteorology

Aerosol Optical Depth

Forecast (Day-Of Emissions)

20230607_12z Aerosol Optical Depth (c360F_fires2023_f10day) 50°N 45°N 40°N 1.2 1.5 1.8 0.6 0.9 2.1

Aerosol Optical Depth

Aerosol Optical Depth

What do you know about emissions?

Valid: June 7, 2023

20230607_12z Aerosol Optical Depth (c360R_fires2023_spinup)

Replayed (Day-Of Emissions)

· Apropol Ontical 2.4 Aerosol Optical Depth

2.7

Forecast (Day-Of Emissions)

Aerosol Optical Depth

National Aeronautics and Space Administration

Site Comparison, June 5, 2023 Init

National Aeronautics and Space This istration Residual Uncertainty Due to Vertical Drafila

Courtesy: Allie Collow

Hunga Tonga Example

January 2022 eruption of Hunga Tonga-Hunga Ha'apei injected modest amount of SO2 (0.4 Tg) into stratosphere, but enormous amount of water (150 Tg, about 10% of background)

Water seriously perturbed the chemistry, causing <u>very</u> rapid conversion of SO2 to sulfate aerosol

Simulations with bin microphysics used to understand impact of eruption:

Simulation with just SO2 results in too small particles at too high altitude

Simulation that includes water impact on chemistry produces better size distribution

Simulation that accounts for chemical <u>and</u> radiative impact has best height, but wrong size distribution—> too much nucleation

National Aeronautics and Space Administration

NNR Implemented on VIIRS-SNPP

Courtesy: Patricia Castellanos, Virginie Buchard

Satellite Visible Angstrom Exponent

- Spectral AOD can help distinguish different aerosol types
- Large aerosol (dust, sea salt) have low spectral AOD variability (low AE), while fine aerosol (smoke, sulfate) have high variability

- Standard AOD retrievals depend on a limited number of assumed aerosol optical models
- As the NNR is based on simulated aerosol types, more variability in the aerosol optical model is possible

NNR Algorithm Modified to Predict Visible Angstrom Exponent

NNR Algorithm Modified to Predict Visible Angstrom Exponent

VIIRS Land Surface

VIIRS Ocean

Validation: Comparison to Maritime Aerosol Network

Handheld sun photometers are deployed during research cruises

MAN Cruise Tracks

Courtesy: Patricia Castellanos, Virginie Buchard

Comparison to 4STAR Airborne Observations of AE

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)

- Airborne sun-sky spectrophotometer measuring direct beam transmittance
- Measures column above aircraft
 - Extensive AOD will be biased, but intensive AE is a more robust comparison
- MODIS underpasses where the aircraft was below 1000 m were considered:
 - KORUS-AQ

DARD

TCAP

- NAAMES lacksquare
- SEAC4RS ullet

As 4STAR measures the partial column, errors are to be expected in comparisons to total column observations

Here we look at the contextual bias:

The NNR AE predictions has a similar error PDF as AERONET

DDARD

Assimilation of GEO 550 nm AOD Over Ocean

QFED: Transitioning from MODIS to VIIRS

The Quick Fire Emissions Dataset (QFED) is the principal GMAO product used in the flagship GEOS systems and GMAO reanalyses.

Objectives

- ullet

Integrate VIIRS NPP and VIIRS JPSS fire data into the Quick Fire Emissions Dataset (QFED; GMAO).

Create fire emissions for R21C and the flagship configurations of GEOS with minimal discontinuity in aerosols and meteorology at the point of transition from MODIS to VIIRS.

QFED: Transitioning from MODIS to VIIRS

Comparison of VIIRS/NPP and VIIRS/JPSS-1 fire emissions with MODIS. The depicted data is proportional to the daily global emissions. The target emissions are QFED(MODIS C6).

Courtesy: Anton Darmenov

Progress

- Redesigned and modernized the QFED code to ease the integration of new fire observations, facilitate science innovation and speed up research to operations.
- Improved the workflow to efficiently ullethandle the growth of data that needs to be processed.
- Generated and evaluated VIIRS fire emissions for the period 2021-2022.

- GOCART2G to go live in GEOS-FP system next year
- MERRA-21C getting going now, products next year
- Work on aerosol microphysics and aerosol-chemistry coupling continuing under Chemistry-Climate Modeling activities; transitions of information content to NRT systems ongoing
- Assimilation of Angstrom exponent will be part of ensemble JEDI system; sometime in next year or so

