

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Bioaerosols: a forgotten component of atmospheric aerosols?

M.Sofiev

with material from S.Sofieva, J.Palamarchuk, I.Šaulienė, E.Kadantsev, N.Atanasova, Y.Fatahi, R.Kouznetsov, J.Kuula, A.Noreikaite, M.Peltonen, T.Pihlajamäki, A.Saarto, J.Svirskaite, L.Toiviainen, S.Tyuryakov, L.Šukienė, E.Asmi, D.Bamford, A.-P. Hyvärinen, A.Karppinen SILAM team SYLVA project team

Outlook

- Introduction
 - bioaerosols: what are they?
 - what we (do not) know about bioaerosols
- · Roles of bioaerosols in the air
- Means of bioaerosol measurements
- Means of bioaerosol modelling
- Example: a recent bioaerosol campaign
- SYLVA Horizon project

Bioaerosols: who are they?

Bioaerosols in the atmosphere

Compilation from Després et al.(2012)

Role of bioaerosols in the environment

- Atmosphere is the key transport media for other environmental compartments, via bioaerosols
 - vital role for the biosphere
 - spread of various organisms across ecosystems
 - short cycling period (< 1 year): an adaptation mechanism for climate change
 - also spreads pathogens (plants, animals, humans)
- Bioaerosols are heavily affected by atmospheric processes and sensitive to climate...
 - plants are sensitive to weather, both in short- (synoptic) and long-term (climate)
 - every insect & animal related to plants is also affected
- ...and can themselves affect the atmosphere and climate
 - cloud condensation nuclei
 - ice nuclei

Froechlich-Nowoisky_et al, 2012, Locations and proportions of phyla in continental, coastal, and marine (ocean) sampling locations, 136 samples in total

Data: European Aeroallergen Network

- The only regular dataset
 - Europe: 1974-c.m.; ~300 sites
 - World: individual sites
- Data are:
 - daily (few sites: bi-hourly)
 - ~20 pollen types
 - some sites: 1-2 spore types
 - not shared
 - 70yrs-old manual technique
 - large uncertainties
 - few sites survive for long
- Models and species:
 - SILAM (12), COSMO-ART (4)
 - + Copernicus (10 from SILAM)

Note: all sites included regardless the current state

Breakthrough: new technology

- Multitude of bioaerosols
- Suitable for regular monitoring (efficiency, availability)
- Key challenge: recognition of particle type
 - improved and automated good-old principle: impaction on a transparent sticky tape followed by microscopic analysis: counting & recognition
 - flow cytometers (real-time particle counters) with recognition based on scatterometry, holography, fluorescence
 - sampling on filters followed by eDNA 3rd generation sequencing (not realtime but ultimate recognition)
- Connection to models
 - real-time evaluation
 - data assimilation (but not model state)

Bioaerosol campaign, 2021

- Motivation
 - scientific: biological composition of the air is poorly known
 - practical: check the flow cytometers in real conditions
- Goals
 - to obtain time-resolving speciation of bioaerosols in Northern Europe
 - to verify feasibility and means of regular bioaerosol observations
- Idea
 - combine classic and new devices
 - include an ultimate solution: 3rd generation DNA sequencer
 - bring together with models
 - complement another bioaerosol campaign (also 2021) comparing many devices

Air-flow cytometers

10 slides per day

Siauliai: sticky glass slides (diameter 20 mm)

- scattering
- depolarization
- fluorescence

Volumetric spore traps

7-day clock – first 2 weeks (28 pcs of 6 hrs collection)

24-hrs clock – rest of the campaign,1 tape per day cut to 12 pcs of 6-hrs collection

Filters were changed in the evening to minimize contacts within FMI

Swisens Poleno particle counter

- Real-time particle counter
- Particle range: 1 μm -100 μm

Ambrosia

- Flow rate: 40 I /
- Particle registra
 - holographic im
 - scattering patter
 - depolarization
 - fluorescence w
 wave lengths
- Particle recognit
 - external machii
 Quercus

Corylus avellana

Fagus sylvatica

Source: https://swisens.ch/en_uk/produkte/swisens-poleno/

Nanopore: 3rd generation DNA sequencer

- Key features compare to earlier next-generation technology
 - much larger part of genome sequenced (up to 5-10k basepairs)
 - small sample needed (few tens of ng of DNA)
 - fast (3 -12 hours for up to 60 samples)
 - cheap (potentially 20-30 Euro/sample)
- Accuracy: 97-99% depending on software

Collection outcome

- Collection periods:
 - Siauliai: 1 March 30 April 2021
 - Helsinki: 15 March 31 May 2021
- Total samples: 1524
- Data loss at collection: 1 day in Helsinki
- Amount of biological material
 - ~30% are suitable for direct DNA sequencing
 - rest requires PCR to boost the DNA amount, at a price of disruption of quantitative composition fractions

Spring 2021, Helsinki: Poleno, SILAM

Poleno Recognition skills

- Significant asymmetric confusion for *Betulaceae*: correct *Alnus* and *Corylus* but half of *Betula* is misinterpreted
- Discrepancy for *Betula* absolute values: about half of *Betulaceae* concentration is missing in May

SILAM predictions skills

 SILAM accurately predicted start of the season while slightly overestimating its duration

https://en.ilmatieteenlaitos.fi/atmospheric-bioaerosols-modelling

DNA yield, 12.03 [ng DNA / m³]

Classification Helsinki, 12.03 full day

Classification Siauliai 12.03 full day

SYLVA: advancing the technology

SYLVA: SYstem for reaL-time obserVations of Aeroallergens, a Horizon project, 2023-2026

Summary

- Bioaerosols are present in the air in significant amounts
- Emission is highly specific
- Apart from self-evident role in biosphere, there is a proven record of interaction with clouds as cloud condensation nuclei and ice nuclei
- Monitoring and modelling are emerging, in several cases approaching service-level maturity (e.g., CAMS pollen service, MASK-Air personal allergy app, ...)