Deep Blue Aerosol Updates

Deep Blue Aerosol Project team:

Jaehwa Lee^{2,1}, N. Christina Hsu¹ (PI), W. Vincent Kim^{2,1}, Seoyoung Lee^{3,1}, and Andrew M. Sayer^{3,1}

¹NASA Goddard Space Flight Center ²University of Maryland College Park ³University of Maryland Baltimore County

Science Objectives:

To create long-term aerosol climate data records using consistent DB/SOAR algorithm suite applied to AVHRR, SeaWiFS, MODIS, VIIRS, and GEO sensors

VIIRS Status

- Version 2 data sets released in April 2023
- Currently producing SNPP and N20 VIIRS data; N21 VIIRS will follow
- Major updates in the retrieval algorithm and data sets
- Algorithm updates include:
 - Better accounting for changing surface pressure
 - Improved surface reflectance determination
 - More realistic aerosol optical models for fine-mode aerosols
- Consistent algorithms are being applied to MODIS and GEO sensors as well

SNPP VIIRS Version 2 vs. Version 1 AOD

SNPP VIIRS DB AOD (550 nm, JJA 2020)

 Surface elevation [m]

 0
 200
 400
 600
 800
 1000

- High elevation regions: mitigated negative biases by better accounting for effects of changing surface pressure
- Bright surfaces: mitigated positive biases by improved surface reflectance
- Aerosol optical model: New fine-mode aerosol model + regional aerosol model adjustments
- Over water: Generally, slight increase in AOD for surface pressure < 1 atm

SNPP vs. NOAA-20 VIIRS AOD

- Over water, SNPP VIIRS is cross-calibrated against Aqua MODIS to mitigate a positive bias in SNPP VIIRS; no cross-calibration is applied for N20 VIIRS.
- Over land, N20 VIIRS is cross-calibrated against SNPP for minor modifications to the algorithm.
- AOD is comparable between SNPP and N20 VIIRS.
- Mean offset = 0.001 0.005 over land, (-0.006) (-0.009) over ocean, and (-0.004) (-0.006) overall, depending on season

Pixel-level Uncertainty

 $\Delta_{\rm N}$

Framework for the evaluation of uncertainty estimates (Sayer et al. 2020a, b)

Uncertainty estimates: finding 1σ confidence interval around retrieved value within which the true value is expected to lie ~68% of the time, following Gaussian statistics

AOD Validation against AERONET (SNPP VIIRS, 2012-2020)

- Over land, VIIRS V2 AOD is generally much improved compared to V1.
- Overall, RMSE decreased from 0.12 to 0.09 (or by ~0.03).
- Higher RMSE results from brighter surface, higher aerosol loading, and/or complex aerosol type
- Over water, RMSE slightly increased from 0.067 to 0.07 (or by ~0.003).

AOD Validation against AERONET (SNPP VIIRS, 2012-2020)

Over land, VIIRS V2 AOD is generally much improved compared to V1.

- Overall, f_{EE} increased from 77% to 82% (or by 5%).
- Over water, f_{EE} decreased from 69% to 66% (or by 3%).

MODIS

- C7 algorithm development is underway for reprocessing scheduled for H2 2024 H1 2025
- Algorithm based on VIIRS V2 including over-water retrievals
- Primary focus is data continuity with minor upgrades
- VIIRS V2.1 will match the MODIS C7 schedule for a seamless transition

GEO

- Demonstration data sets have been processed using G16/17 ABI and H8 AHI
- Algorithm based on VIIRS V2 including over-water retrievals
- Consistent performance with LEO sensors despite lacking 412 nm band

AVHRR and SeaWiFS (newly funded through NASA's MEaSUREs Program)

- A subset of NOAA-11/14/18 AVHRR DB data has been available over both land and water
- Recently funded for complete data records (40+ years since 1979)
- New SeaWiFS data including some of the updates since made

MODIS C7 algorithm

- New over-water retrievals
- Better consistency with VIIRS V2
- Upgrades will be transferred to VIIRS V2.1

MODIS vs. VIIRS File Formats

VIIRS Version 2

- / Same Aerdb_L2_VIIRS_SNPP.A2018001.0000.001.2023180103723.nc
 - Aerosol_Optical_Thickness_550_Expected_Uncertainty_Land
 - Aerosol_Optical_Thickness_550_Expected_Uncertainty_Ocean
 - Aerosol_Optical_Thickness_550_Land
 - Aerosol_Optical_Thickness_550_Land_Best_Estimate
 - Aerosol_Optical_Thickness_550_Land_Ocean
 - Aerosol_Optical_Thickness_550_Land_Ocean_Best_Estimate
 - Aerosol_Optical_Thickness_550_Ocean
 - Aerosol_Optical_Thickness_550_Ocean_Best_Estimate
 - Aerosol_Optical_Thickness_550_STDV_Land
 - Aerosol_Optical_Thickness_550_STDV_Ocean
 - Aerosol_Optical_Thickness_QA_Flag_Land
 - Aerosol_Optical_Thickness_QA_Flag_Ocean

• • •

MODIS Collection 7 candidate

- MYD04_L2.A2017277.1135.007.2023296132146.nc
 - 🕨 😰 geolocation_data
 - 🖻 😂 geophysical_data_Dark_Target
 - 🕨 🔄 geophysical_data_Dark_Target_Deep_Blue_Combined
 - 🛛 🔄 geophysical_data_Deep_Blue
 - Aerosol_Optical_Thickness_550_Expected_Uncertainty_Land
 - Aerosol_Optical_Thickness_550_Expected_Uncertainty_Ocean
 - Aerosol_Optical_Thickness_550_Land
 - Aerosol_Optical_Thickness_550_Land_Best_Estimate
 - Aerosol_Optical_Thickness_550_Land_Ocean
 - Aerosol_Optical_Thickness_550_Land_Ocean_Best_Estimate
 - Aerosol_Optical_Thickness_550_Ocean
 - Aerosol_Optical_Thickness_550_Ocean_Best_Estimate
 - Aerosol_Optical_Thickness_550_STDV_Land
 - Aerosol_Optical_Thickness_QA_Flag_Land
 - Aerosol_Optical_Thickness_QA_Flag_Ocean

. . .

RMSE

RMSE

New Aerosol Layer Height and SSA Products

118.1

120.1

115.9

113.4

110.3Lon (°E)

UVAI ~ f(AOD, SSA, ALH)٠

104

40

36

32

28

24

20

- Applied to smoke and dust over both land and water ٠
- Originally using VIIRS, OMPS, and CALIOP •
- Now works without CALIOP for operational processing ٠
- Dependent on AOD retrieval accuracy ٠ Jeong and Hsu (2008), Lee et al. (2015, 2016, 2021)

North American Wildfire Smoke

VIIRS-OMPS-CALIOP

VIIRS-OMPS

Summary

- VIIRS Version 2 Deep Blue aerosol products are now operational and available at LAADS DAAC and Earthdata (<u>https://earthdata.nasa.gov</u>).
- The V2 AOD is much improved compared to V1 particularly over high elevation regions and bright surfaces, and for fine-mode aerosols.
- The cross-calibration enables the creation of consistent aerosol data records using the series of VIIRS as well as the twin MODIS.
- Consistent algorithm will be used for MODIS Collection 7 reprocessing and GEO data records.
- New aerosol layer height and aerosol above cloud products will be added in the later versions.
- 40+ years of AVHRR aerosol data records will be created in the future.

Backup slides

Historical AVHRR AOD

NOAA-18 AVHRR AOD (2006)

Cross-calibration of NOAA-20 VIIRS against SNPP VIIRS

- Cross-calibration of SNPP VIIRS against Aqua MODIS over ocean (no cross-calibration for N20 VIIRS)
- Similar approach is used to match N20 VIIRS against SNPP using the matchup data generated by A-SIPS over Dome-C cal/val site (Aqua MODIS serves as bridge between SNPP and N20).
- This ensures minimal algorithm modifications for N20 VIIRS data processing.

SNPP VIIRS Version 2 vs. Version 1 AOD (2012-2020)

Expected error (EE) = \pm (0.04+10%) over land

SNPP VIIRS Version 2 (2012-2020)

SNPP VIIRS Version 2 vs. Version 1 AOD (2012-2020)

- Over land, V2 statistics are better at 22% (RMSE)-46% (MB) of sites.
- Over ocean, V2 statistics are generally comparable to V1 except for f_{EE} due to a slight positive offset in V2. This has implications for sensor calibration.

AOD Validation against AERONET (SNPP VIIRS, 2012-2020)

Region name	Correlation		MB		RMSE		f _{EE}		f _G	
	V1	V2	V1	V2	V1	V2	V1	V2	V1	V2
Global	0.81	0.85	0.004	0.0003	0.120	0.093	0.77	0.82	0.48	0.54
ENA	0.79	0.83	0.009	-0.003	0.080	0.064	0.83	0.88	0.55	0.64
WNA	0.55	0.70	-0.005	0.004	0.129	0.076	0.82	0.85	0.56	0.62
SAM	0.58	0.64	-0.009	-0.002	0.076	0.065	0.76	0.81	0.52	0.56
EUR	0.81	0.81	0.005	-0.001	0.064	0.058	0.84	0.86	0.53	0.55
NAME	0.78	0.83	0.046	0.011	0.161	0.128	0.55	0.70	0.26	0.36
SAF	0.72	0.83	-0.026	0.005	0.129	0.101	0.62	0.76	0.35	0.45
CAS	0.90	0.90	-0.009	-0.007	0.137	0.128	0.76	0.77	0.43	0.43
IND	0.90	0.91	-0.04	-0.003	0.186	0.177	0.67	0.72	0.32	0.37
SEA	0.86	0.90	0.032	-0.001	0.228	0.206	0.53	0.66	0.25	0.33
NEA	0.88	0.91	0.022	-0.006	0.151	0.120	0.69	0.78	0.36	0.43
OCE	0.41	0.63	0.007	0.006	0.087	0.050	0.74	0.86	0.51	0.64
BOR	0.82	0.79	0.007	0.0001	0.182	0.103	0.88	0.89	0.63	0.67
WAT	0.87	0.87	0.015	0.019	0.067	0.07	0.69	0.66	0.56	0.53

Better Comparable Worse

 $\begin{array}{l} f_{EE} = \pm (0.05 \! + \! 15\%) \text{ over land} \\ \pm (0.03 \! + \! 10\%) \text{ over water} \\ f_G = 0.03 \text{ or } 10\% \end{array}$

- V2 AOD is comparable or better than V1
- NAME/SAF: all statistics are improved
- WNA/BOR: RMSE decreased over 0.05
- NAME/SAF/SEA/OCE: f_{EE} increased over 10%
- Slight degradation over water (V2 AOD is slightly higher than V1)

Comparisons of GEO DB AOD against AERONET (ABI/GOES-16)

- Modified VIIRS V2 algorithm has been applied to GEO sensors (G16/17 ABI and H8 AHI)
- Validation statistics of GEO AOD are comparable with VIIRS V2 AOD except for extreme observation angles
- One year of GEO demonstration data sets (May 2019 April 2020) will be released in mid-2023

Comparisons of GEO DB AOD against AERONET (AHI/Himawari-8)

- Modified VIIRS V2 algorithm has been applied to GEO sensors (G16/17 ABI and H8 AHI)
- Validation statistics of GEO AOD are comparable with VIIRS V2 AOD except for extreme observation angles
- One year of GEO demonstration data sets (May 2019 April 2020) will be released in mid-2023

Transition to Operational Environment (Retrieval without CALIOP)

- Retrieves aerosol layer height and SSA using UVAI and 412 nm TOA reflectance
- AOD and surface reflectance constrained by VIIRS Deep Blue product
- AOD from 490 nm band (less sensitive to ALH)
- Aerosol optical model:
 - Bimodal lognormal distribution
 - 550 nm fine-mode AOD fraction
 - Absorption AE
 - Smoke and nonspherical dust

Smoke Altitude over Major Source Regions

2012-2017	N.America	S.America	S.Africa	SE Asia	Siberia
Number of smoke pixels	598483	85077	1563502	233594	948922
Percentage above PBL	79%	25%	37%	36%	72%
Percentage above SAL	38%	9%	9%	8%	27%