Overview of the |ASI-derived ULB
dust product and recent
developments

S. Whitburn

Université libre de Bruxelles (ULB)
Royal Meteorological Institute of Belgium (RMIB)

L. Clarisse, C. Clerbaux, B. Franco, J. Hadji-Lazaro, A.K. Kopp, D. Hurtmans and P-F. Coheur




Infrared Atmospheric Sounding Interferometer (IASI)

* |ASI: Thermal IR nadir sounder

* On board the Metop (-A, -B and -C) polar orbiting satellites since 2007

>16 years of continuous and consistent measurements... + 25 years to come
with IASI-NG

SAMPLING ~ 1.3 million spectra/day

* Pixel size: 12 km on ground at nadir

* Global coverage & high sampling: global measurements twice daily
~9.30 AM & PM

INSTRUMENTAL

* Broad spectral range: 645-2760 cm! (15.5-3.62 um), with no gaps

* Spectral sampling : 0.25 cm™!

MISSION GOALS

1. Meteorology (Water vapour, T profiles)
2. Atmospheric Composition and Chemistry (03, CO, H20, ...)
3. Climate (Radiation, Surface Temperature, CO2, etc..) 2



- Complementarity between Visible/NIR and Thermal Infrared observations

VisiBLE/NIR THERMAL INFRARED

Daytime only (reflected sun) Day or night (Earth radiation)
Fine particles (<1 pum) Coarse particles (>1 um)
(e.g. dust, smoke, PM, most aerosol) (dust, ash, sulphate, clouds, ice)
Not sensitive to altitude Sensitive to altitude
(but better on BL!) (but worse on BL!)
Challenges over bright surfaces Challenges over desert/snow surfaces
(reflectivity) (emissivity)
Limited sensitivity to composition Sensitivity to composition (certain types)
dust, ash, sulphate (dust, ash, sulphate, clouds, ice)
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Abstract Aerosol is an important component of the Earth’s atmosphere, affecting weather, climate,
and diverse elements of the biosphere. Satellite sounders are an essential tool for measuring the highly
variable distributions of atmospheric aerosol. Here we present a new algorithm for estimating atmospheric
dust optical depths and associated retrieval uncertainties from spectral radiance measurements of

the Infrared Atmospheric Sounding Interferometer (IASI). The retrieval is based on the calculation

of a dust index and on a neural network trained with synthetic IASI spectra. It has an inherent high
sensitivity to dust and efficiently discriminates dust from other aerosols. In particular, over remote
dust-free areas, the retrieved levels of optical depth have a low bias. Over sea, noise levels are markedly
lower than over land. Performance over deserts is comparable to that of other land surfaces. We use
ground-based coarse mode aerosol measurements from the AErosol RObotic NETwork to validate

the new product. The overall assessment is favorable, with standard deviations in line with estimated
uncertainties, low biases, and high correlation coefficients. However, a systematic relative bias occurs
between sites dominated by African and Asian dust sources respectively, likely linked to differences in
mineralogy. The retrieval has been performed on over a decade of IASI data, and the resulting data set is
now publicly available. We present a global seasonal dust climatology based on this record and compare
it with those obtained from independent satellite measurements (Moderate Resolution Imaging
Spectroradiometer and a third-party IASI product) and dust optical depth from the ECMWF model.

1. Introduction

Aeolian dust affects the Earth in a multitude of ways. It is an important source of micronutrients for the
terrestrial and marine ecosystems but at the same time reduces air quality and visibility in large parts of
the world. Mineral dust further plays diverse roles in the Earth's atmosphere, weather, and climate through
radiation, cloud, and surface interactions (Boucher, 2015; Knippertz & Stuut, 2014).

Satellite measurements of dust have proven to be very useful in identifying sources (Ginoux et al., 2012),
transport (Yu et al., 2013), and relevant meteorological processes (Knippertz & Todd, 2012) and in charac-
terizing diurnal (Schepanski et al., 2009) and seasonal cycles as well as multiyear trends (Zhang & Reid,
2010). In addition, they are now routinely used to evaluate and improve regional and global models (Cuevas
etal.,2015) and are assimilated to yield near-real-time forecasts (Benedetti et al., 2009). The most commonly
derived aerosol parameter from space is the aerosol optical depth (AOD) at 500/550 nm, which is a mea-
sure of how much light is absorbed and scattered by dust at visible wavelengths. A study of 15 different data
sets (Carboni et al., 2012), retrieved using a variety of different instruments and algorithms, concluded that
agreement of the data sets with ground-based AOD measurements was “reasonably good” but also identified
large differences between the different data sets, especially over land. Depending on the sounder and algo-
rithm, other optical (Angstrom exponent, single scattering albedo, and even refractive index) and physical
(size and shape) parameters can be measured (Tanré et al., 2011).

The most widely used satellite aerosol products are derived from instruments with visible and near-infrared
spectral bands, such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track
Scanning Radiometer (AATSR), and POLarization and Directionality of the Earth's Reflectances (POLDER).
These are obviously well suited to measure AOD at visible wavelengths. Thermal infrared instruments can
also be used to detect and measure dust, but their added value is arguably being underestimated until the
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Part 1:

The IASI dust OD retrieval



1. A dust index
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Bias correction on Ry
B. Offsets and trends: from v8 to v9
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Offsets and trends correction: from v8 to v9
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C. v9: anew cloud mask
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| Cloud-free product !

Until v8: cloud mask = IASI L2 cloud product

v9: new IASI NN-based cloud mask:

» Pattern recognition network (two layers)
* Reference dataset: latest version of the L2.
* |nputs: IASI radiance information only.
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Abstract. With more than 15 years of continuous and consis-
tent the Infrared Sounding In-
terferometer (IASI) radiance dataset is becoming a reference
climate data record. To be exploited to its full potential, it
requires a cloud filter that is accurate, unbiased over the full
IASI life span and strict enough to be used in satellite data
retrieval schemes. Here, we present a new cloud detection
algorithm which combines (1) a high sensitivity, (2) a good
consistency over the whole IASI time series and between the
different copies of the instrument flying on board the suite
of Metop satellites, and (3) simplicity in its parametrization.
The method is based on a supervised neural network (NN)
and relies, as input parameters, on the IASI radiance mea-
surements only. The robustness of the cloud mask over time
is ensured in particular by avoiding the TASI channels that
are influenced by CO,, N0, CHy, CFC-11 and CFC-12 ab-
sorption lines and those corresponding to the vy HyO ab-
sorption band. As a reference dataset for the training, ver-
sion 6.5 of the operational IASI Level 2 (L2) cloud product
is used. We provide different illustrations of the NN cloud
product, including comparisons with other existing products.
We find very good agreement overall with version 6.5 of the
operational TASI L2 with an identical mean annual cloud
amount and a pixel-by-pixel correspondence of about 87 %.
The comparison with the other cloud products shows a good
correspondence in the main cloud regimes but with some-
times large differences in the mean cloud amount (up to
10 %) due to the specificities of each of the different prod-

ucts. We also show the good capability of the NN product to
differentiate clouds from dust plumes.

1 Introduction

Clouds cover between 70 % and 80 % of the Earth’s surface,
at any moment (Lavanant et al., 2011; Stubenrauch et al.,
2017). Because of their importance for the weather, the wa-
ter cycle and the Earth radiation budget, the development of
long, accurate and coherent time series of cloud properties
(e.g. cloud amount, cloud top height, optical thickness, cloud
type) is essential for improving our understanding of the cli-
mate and its past and future evolution. We can rely for this
on satellite observations, which allow the daily cloud cover-
age to be studied at global scales. Their use to detect clouds
and to derive climatologies began in the 1980s. One of the
first global cloud climate data records is the International
Satellite Cloud Climatology (ISCCP), which started in 1982
(Schiffer and Rossow, 1983; Rossow and Schiffer, 1999).
With more than 40 years of record, it has become today a
reference for climate analysis. Since then, the measurements
from a variety of sounders on board polar and geostationary
platforms have been used to detect and characterize clouds
(e.g. Kaspar et al., 2009; Karlsson et al., 2013, 2017; Sten-
gel et al,, 2017; Feofilov and Stubenrauch, 2017). Despite
this, they remain today one of the largest sources of uncer-
tainties in future climate projections (Schneider et al., 2017;
Zelinka et al., 2017; Satoh et al., 2018). Besides their impor-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Bias correction on Ry

C. v9: anew cloud mask

Mean cloud-free fraction

 Accurate and strict enough to be used in retrieval frameworks,
* Consistent over time and between the 3 I1ASI/Metop,
 Able to differenciate clouds from dust plumes

Fraction of IASI cloud-free pixels
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Cloud/dust differenciation
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How does the Ry index vary with optical depth?

200 . ' , '
500 m el e .
1500 m Sensitivity to:

150 | * the dust amount
* the dust layer altitude
* the atmospheric state

v 100 r _
For a given atmosphere:

e Ry increases monotonically with increasing OD
* (ODs>2-3: Saturation level

* Small ODs: linear relationship between OD and Ry
» Slope determined by the thermal contrast (Tskin — Tdust)

50 r

0 0.5 | 1.5 2 2.5 3
Optical depth at 10um
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2. Conversion of the Ry to dust AOD

... using a neural network

A. Training the NN:

INPUT

Viewi | o Atmospheric state of random IASI
IEWINg angle observations (>200,000 in total)

o random DOD (0-3) and altitude layer
Temperature of the dust layer (0-7 km)

e Simulation of IASI spectra

Surface pressure . .
P e Calculation of corresponding Ry

Humidity profile

Surface Emissivity

Dust index + couple of channels
(“baseline temperature”)

At 10 um

OUTPUT
DATA

Radiance data
Opticaldepth

Optical depth




Subtlety: training of ratio CR=OD/R.

200

150

v 100

50

041
7
/

0.5 1 1.5 2
Optical depth at 10pum

2.5

3

= OD=CRxR

Advantages:

- Much smaller dynamic range! = better training

- Noiseless neural network (unbiased data set):

low sensitivity: OD = R, ;.. X CR (normal distribution)

- Noise is preserved outside of the network

Dust index

0D retrieval
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Training performances

Altitude

Altitude

Relative error: ~10%, except for low altitudes (up to 25%)

I

\S]

Ocean - Relative errors (in %)

0.5 1

1.5 2 2.5 3

Land - Relative errors (in %)
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B N § s
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OD at 10 ym

Biases: close to 0, except for low altitudes
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B. Running the NN:

* |Inputs: IASI L1c or L2 data

(water vapor, P, BT, Ta,
sat. angle, €,)

 Exception: Dust altitude =2
climatology from CALIOP

Altitude (km) 17



Uncertainty estimates

2 2 2 2

90D > /00D 90D d0D 90D ,
oo = [(Gaomr) +(Ggon) +(Ggom) +(Tror) + (G omom) +om

“Random errors” Typical uncertainties when dust : 15-30%

Aerosol altitude.

IASI instrumental noise on R.

IASI instrumental noise on the input baseline channels.
Temperature profile.

Humidity profile.

e WNPE

“Systematic errors”

1. Neural network errors (10%)
a. Training
b. Auxiliary data (emissivities, refractive indices)
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Part 2:

Illustrations and comparisons



Transported dust over the Atlantic Ocean
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Metop A + Metop B
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Transported dust over Europe and the Mediterranean
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1. MACC ECMWEF
comparison

June 2013

IASI OD 10pum vs ECMWEF 550 nm:

Qualitative agreement
* Sources areas

* Transport patterns
* Remote areas
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1. MACC ECMWEF
comparison

August 2013

IASI OD 10pum vs ECMWEF 550 nm:

Qualitative agreement
* Sources areas

* Transport patterns
* Remote areas
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1. MACC ECMWEF
comparison

October 2013

IASI OD 10pum vs ECMWEF 550 nm:

Qualitative agreement
* Sources areas

* Transport patterns
* Remote areas
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2. Aeronet comparison

* For comparison with IASI/IASI-NG, the coarse mode products OD (e.g. SDA 2.0) are most representative
e Conversion from 10um to 0.55 often problematic (i.e. assumptions on the PSD are needed). Here, constant factor of 2.

e Comparison: (1) AERONET averaged in +/- 30 min. of IASI overpass;
(2) IASI averaged within +/- 30 km of AERONET site.
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Remote regions
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All stations:

Summary AERONET vs

IASI

TASI Coarse Dust OD at 550 nm

fficient (0.86)

0.8

0.6

0.4

0.2

M 2

Intercept (-0.06
~
I S T

All stations (304455 collocations)

0

o —
= Paa . ':_--..._;

g Slope: 1.00
e T Intercept: -0.03
. R:0.73

std: 0.09

0.2 0.4 0.6 0.8
AERONET Coarse Mode AOD at 550 nm

TASI Coarse Dust OD at 550 nm

Stations in dust region (55901 collocations)

e
)

1 fam ] 1 - T _.._r
. 1 ':: -
= 2ok

gerrin T
0.6 -t
TrE
" [
0.4 - :_g.-_. " -
o -l
0.2 .
0 Slope: 1.07
- Intercept: -0.04
R:0.79
std: 0.14
0 0.2 0.4 0.6 0.8

AERONET Coarse Mode AOD at 550 nm

0.3

0.25

0.2

0.15

0.1

0.05

-0.5

10

29



(@) CALIOP DAOD Trend (2007-2019) (b) MODIS DAOD Trend (2007-2019)
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Summary

Theoretical advantages
- Fast
- Full spectral range (highly sensitive)

- Low dependency on the forward model (RI, emissivity, etc, ....)
- Full atmospheric state
- Full uncertainty analysis (propagation of input parameters)

Current limitations

- No retrieval of altitude
- Cloud free conditions

Evaluations

- Correlations with AERONET > ~0.8

- Comparison with model ‘satisfactory’ (qualitatively)
- Continuity: Land/Ocean — AM/PM

Data availability (L2 and gridded L3 data)
ICARE Data and Service Center: https://www.icare.univ-lille.fr/

31



