

Toward an operational NRT GRASP processor for EPS-SG/3MI

<u>Soheila Jafariserajehlou^{1,2}</u>, Bertrand Fougnie¹, Andriy Holdak^{1,3}, David Huerta Valcarce^{1,2}, Thierry Marbach¹, Bojan Bojkov¹

EUMETSATRemote Sensing & Products / Cloud & Aerosol (RSP/CLA)1) EUMETSAT2) Rhea Systems GmbH3) Vision Space Technologies

November 2023

3MI Multi-view Polarimeter and L1C data Simulated data with GRASP-RTM

3MI L2 retrieved using GRASP Aerosol and surface properties

Cal/Val activities Analysis and development of tools

Conclusion Overview of the status and outlook

EPS-SG sensors – Polarimetry with 3MI

3MI : Multi-viewing Multi-channel Multi-polarisation imager

"c-polluted

"c-dust'

3MI TOA and L1C

The data prepared using Hygeos & LOA TDS in form of:

- Reformatted TOA L1B to L1C;
- Generation of L1C using in-house prototypes;
- This TDS contains clouds, gas absorption, Aerosol and surface properties from climatology (MACC)

The 3MI TOA data simulated using GRASP forward mode:

- To produce this data, the geometry is taken from Hygeos/LOA simulated data and Climatology of POLDER/PARASOL and MODIS used for aerosol and surface properties;
- No gas absorption and no cloud.

Caveat:

The differences in inputs and forward model impact the performance of L2 GRASP retrieval.

EUM/RSP/DOC/23/1385848, v1 Draft, 7 November 2023

GRASP: Generalized Retrieval of Atmosphere and Surface Properties

240 – 336 measurements

3MI:

- Radiances and polarization

 (410, 440, 490, 560, 670, 870, 1650, 2103 nm)
- 10–14 viewing directions

See the presentation on Friday: Aerosol retrieval products retrieved from different satellite observation using GRASP platform by Oleg Dubovik

www.eumetsat.int

AEROSOL

- AOD (8 wavelengths)
- Size distribution
- Spectral index of refraction (8 wavelengths)
- Sphericity fraction
- Aerosol height
- SSA
- Absorbing AOD (8 wavelengths)
- Angstrom Exponent

Surface

- BRDF (3 Spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

Particle Size Distribution: 0.05 μ m \leq R (22 bins) \leq 15 μ m $\int_{0}^{40} \int_{0}^{40} \int_{0}^{$

Architecture of the GRASP

104 = 8 (AOD) + 5(SD) + 16 (ref. ind.) + 1 (nonsp.) + 24 (BRDF) + 8 (BPDF) + 1 (height) + 1 (AEx) + 8 (AAOD) + 8 (SSA) + 24 (CoxMunk)

GRASP: Generalized Retrieval of Atmosphere and Surface Properties

3MI:

- Radiances and polarization

 (410, 440, 490, 560, 670, 870, 1650, 2103 nm)
- 10–14 viewing directions

Retrieved & derived parameters in GRASP HighPrecision version:

240 – 336 measurements

AEROSOL

- AOD (8 wavelengths)
- Size distribution
- Spectral index of refraction (8 wavelengths)
- Sphericity fraction
- Aerosol height
- SSA
- Absorbing AOD (8 wavelengths)
- Angstrom Exponent

Surface

- BRDF (3 Spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

104 = 8 (AOD) + 5(SD) + 16 (ref. ind.) + 1 (nonsp.) + 24 (BRDF) + 8 (BPDF) + 1 (height) + 1 (AEx) + 8 (AAOD) + 8 (SSA) + 24 (CoxMunk)

Architecture of the GRASP

www.eumetsat.int

3MI - AOD

using 3MI-GRASP;

GRASP inversion;

•

•

1.0

0.8

0.6

0.4

0.2

AOD 3MI GRASP retrieval

www.eumetsat.int AOD @555, 3MI-GRASP, input: simulated data SJ Multi-pixel retrieval, 23.02.2008 AOD @555, Climatology, POLDER/PARASOL - 1.0 **-**1.0 Aerosol and surface properties are retrieved +45° +45° The comparison of retrieved AOD to the AOD of climatology shows a high agreement and 0.8 0.8 therefore indicates the consistency in the +30° +30° 4.1 Areas to be investigated in input, e.g. Mediterranean sea. +15° +15° 0.6 0.6 0° 0° 700 600 - 0.4 0.4 -15° -15° 500 400 -30° -30° - 300 - 0.2 0.2 - 200 -45° -45 - 100 Retrieval matolo 0.0 0.0 0.6 0.8 1.0 -15° 0° +15° +30° -15° 0° +15° +30° AOD POLDER/PARASOL Climatology

0.2

0.4

AOD, error estimation and surface reflectance

Refractive index narameters

Ahsorhing AOD and Spherical fraction

www.eumetsat.int

More parameters

0°

-15°

+15°

+30°

Angstrom exponent

etsat.int

Cal/Val approach for Aerosol validation

- 1/ Qualitative analysis:
 - Visualisation of AOD maps, associated parameters (error, surface, geometry, models...)
- 2/ Space-based comparative analysis:
 - Other space references: MODIS, VIIRS...
 - Other EUMETSAT sensors: PMAp, SLSTR
- 3/ Ground-based validation:
 - AERONET matchups (diversity of situations, time-series...)
 - Other sources: ACTRIS
- 4/ Consistency with aerosol sources (detection and type):
 - Use of Fire products (FIR/FRP)
 - Volcano bulletin...
- 5/ Model-based validation:
 - EMACS, CAMS...
- 6/ Alternative algorithms:
 - SRON (3MI), GRASP (S3)...

See the presentation on Thursday: Harmonised Cal/Val strategy, and FRM requirements by Bertrand Fougnie

Qualitative analysis

Analysis of the Land surface parameters:

GRASP BRM is presented as the sum of:

- The semi-empirical Ross-Li sparse BRDF model = linear combination of 3 kernels representing isotropic (fiso), volumetric (fvol), and geometric (fgeom) optics surface scattering
- The reflection matrix based on semi-empirical Maignan-Breon BPDF (Bidirectional Polarization Distribution Function) model

Qualitative analysis

Spectral AOD

Spectral surface reflectance

Correlation between AOD and surface reflectance

www.eumetsat.int

ACD can be naturally correlated with the surface signal (topography, surface type, dynamics...)

But could be the sign of a deficient SSAR retrieval

The (potential) residual surface contribution impacting the aerosol product has to be documented

Ground-based validation: Global performance of GRASP/POLDER

EUM/RSP/DOC/23/1385848, v1 Draft, 7 November 2023

- Conclusion
- Different versions of GRASP processor has been installed and tested successfully in the offline environment of EUMETSAT,
- The results are evaluated and analysis of retrieved parameters is ongoing to identify and propose the room for improvement;
- An improvement is expected in term of performance compared to previous retrieval algorithms but also wrt the content of the product;
- The prototype of operational processor is under development to transport GRASP to Ground-Segment of EUMETSAT;
- We can tailor the product to better meet the requirement (in term of product content and accuracy) from users.
- 3MI GRASP will be contributing to the MAP synergy product as the scientific core of retrieval algorithm.

References

[1] Grzegorski et al., Multi-sensor Retrieval of Aerosol Optical Properties for Near-Real-Time Applications Using the Metop Series of Satellites: Concept, Detailed Description and First Validation, Remote Sensing, 2022.

[2] Fougnie, B., Marbach, T., Lacan, A., Lang, R., Schlüssel, P., Poli, G., Munro, R., Couto, A. B., The multi-viewing multi-channel multi-polarisation imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization, Journal of Quantitative Spectroscopy and Radiative Transfer, 2018.

[3] Fougnie, B., Chimot, J., Vázquez–Navarro, M., Marbach, T., Bojkov, B., Aerosol retrieval from space – how does geometry of acquisition impact our ability to characterize aerosol properties, Journal of Quantitative Spectroscopy and Radiative Transfer, 2020.

[4] T. Marbach, J. Riedi, A. Lacan, P. Schlüssel, "The 3MI mission: multi-viewingchannel-polarisation imager of the EUMETSAT polar system: second generation (EPS–SG) dedicated to aerosol and cloud monitoring," Proc. SPIE 9613, Polarization Science and Remote Sensing VII, 2015.

www.eumetsat.int

Thank you for your contribution !

EUM/RSP/DOC/23/1385848, v1 Draft, 7 November 2023