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outline 

 benefits from assimilation ?

 comparing AOD and Angstrom of

 forecast  (ECMWF)

 GEMS assimilation

 MACC assimilation

 strength and weaknesses

 by „subjective‟ comparison

 by „objective‟ scores

 exploring regional errors and differences 

 finally something related to the title



the task

 to be evaluated monthly maps

 ECMWF aerosol forecasts for 2003 and 2004
SO2/DMS, sulfate, o./bl. carbon (hydro. / nonhydro. 

each), seasalt (3*size), dust (3*size) :  12 tracers

 GEMS assimilations for 2003 and 2004
MODIS (coll. 5) aerosol optical depth (no S removal)

 MACC assimilations for 2003 and 2004 (GFED3)

MODIS (coll. 5) aerosol optical depth used 

 AOD (aerosol optical depth) (info on ‘amount’)

 Angstrom parameter (info on ‘aerosol size’)



on terminology

 aerosol optical depth (AOD)

 extinction along a (vertical) direction due to 

scattering and absorption by aerosol

here for the entire atmosphere

here for the mid-visible (0.55mm wavelength)  

 Angstrom parameter (Ang)

 spectral dependence of AOD in the visible spectrum

 small dependence  (Ang ~ 0) a aerosol  > 1mm size

 strong decrease (Ang > 1.2) a aerosol < 0.5mm size



the reference

 sunphotometer  AOD data

 AERONET(~200)  + GAW (15) + SKYNET (8)
 monthly statistics combined on a 1X1 (lat/lon) grid
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AOD diff. to AERONET
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Angstrom simulations
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first „subjective‟ impressions

MODIS data assimilation

 increases high AOD bias over land

 reduces Saharan dust

 reduces Angstrom over NH continents

MACC vs GEMS

 reduced AOD for biomass over S.America

 (further) reduced Angstrom parameters



… and now more „objective‟

 quantify data performance by one number

 develop a score such that contributing 

errors to be traceable back to

 bias

 spatial correlation

 temporal correlation

 spatial sub-scale (e.g. region)

 temporal sub-scale (e.g. month, day)

make this score outlier resistant 



 one possible scoring method ….



one number !

- 0.504



info on overall bias

- 0.504
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the bias



| 1 | is perfect …. 0 is poor

- 0.504

sign of 

the bias

the closer to

absolute 1.0

… the better



product of sub-scores

- 0.504 = 0.9 *-0.7 * 0.8
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spatial stratification

- 0.504 = 0.9 *-0.7 * 0.8
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spatial stratification

- 0.504 = 0.9 *-0.7 * 0.8

sign of 

the bias

time

score

bias

score

spatial

score

spatial sub-scale scores

overall

score

temporal sub-scale scores (e.g. month or days)

averaging in time
instantaneous median data



sub-score definition

 each sub-score S

is defined 

 by an error  e and

 by an error weight  w

0.9 *-0.7 * 0.8

S = 1 – w * e
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bias error

 S = 1 – w * e
 all errors e are

rank-based

 e, bias =   (rank-sum1 – rank-sum2) /(sum12)
(between  e = -1  and  e= +1)

how does the rank bias error work ?

 set 1:   1 7 8 value: 9 8 7 4 3 1       rank-sum 1:  11 
 set 2:   3 4 9 rank:   1 2 3 4 5 6       rank-sum 2:  10

bias = (1-2)/(1+2) = (11-10)/21 ~zero  a no clear bias
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total score S

 S = ST * SB * SS

= (1 – w * eT)

* (1 – w * eB)

* (1 – w * eS)

 all errors e are “rank-based”

 weight   w = (75%pdf - 25%pdf  - De)/  50%pdf                                      
…   but not smaller than 0 & not larger than 1.0

 simply put …

no variability (w = 0): errors do not matter/count
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bias error  eB

 SB = 1 – w * eB

 eB =   (rank-sum1 – rank-sum2) /(sum12)
(eB between -1  and  +1)
(sign of eB indicates bias)

how does the rank bias error work ?

set 1:  1 7 8 value: 9 8 7 4 3 1    rank-sum 1:  11 
set 2:  3 4 9 rank:   1 2 3 4 5 6    rank-sum 2:  10

bias = (rs1-rs2)/(rs1+rs2) = (11-10)/21 ~zero  a no bias

bias

score

correlation correlationbias



spat.error  eS, temp error  eT

 S = 1 – w * eS

 S = 1 – w * eT

eS =   (1- rank_correlation coeff.) /2

( correlated: e = 0,      anti-correlated: e = 1)

…using regional data at one time

eT =   (1- rank_correlation coeff.) /2

( correlated: e = 0,      anti-correlated: e = 1)

…using time series of regional median data

time

score

spatial

score

correlation correlationbias



scoring approach

 one single score  …

… without sacrificing spatial and temporal 
detail !

 stratification into error contribution from

 bias

 spatial correlation

 temporal correlation

 robustness against outliers

 still … just one of many possible approaches

 now to some applications …       



 now with real data



questions

 how did the different simulations score?

 forecast

 GEMS assimilation

 MACC assimilation   

 did assimilations improve the forecast?

 overall ?

 seasonality ?

 spatial correlation ?

 bias ?

 in what regions ?

 In what months ?



annual global scores 

 year 2003 - aod

 TOTAL seas bias corr

 macc  .56 .90  .81   .77

 gems  .56 .91  .77  .79

 forec  .49 .81  .79  .77

 year 2003 – Angstrom

 TOTAL seas bias corr

 gems  .63 .87  .86  .85

 forec   .63 .88  .85  .84

 macc -.59 .81 -.86  .85

 year 2004 - aod

 TOTAL seas bias corr

 macc  .55 .90  .80  .77

 gems  .55 .90  .77  .79

 forec   .50 .83  .79  .77

 year 2004 - Angstrom

 TOTAL seas bias corr

 mac    .67 .89  .87  .87

 forec   .66 .89  .86  .86

 gems .65 .87  .87  .86

vs sun-photometry



better overall AOD score 

 year 2003 - aod

 TOTAL seas bias corr
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 gems  .55 .90  .77  .79

 forec   .50 .83  .79  .77
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better AOD seasonality 

 year 2003 - aod

 TOTAL seas bias corr

 macc  .56 .90  .81  .77

 gems  .56 .91  .77  .79

 forec   .49 .81  .79  .77

 year 2003 – Angstrom

 TOTAL seas bias corr

 gems  .63 .87  .86  .85

 forec   .63 .88  .85  .84

 macc -.59 .81 -.86  .85

 year 2004 - aod

 TOTAL seas bias corr

 macc  .55 .90  .80  .77

 gems  .55 .90  .77  .79

 forec   .50 .83  .79  .77

 year 2004 - Angstrom

 TOTAL seas bias corr

 mac    .67 .89  .87  .87

 forec  .66 .89  .86  .86

 gems .65 .87  .87  .86

vs sun-photometry



pos. AOD bias – worse in GEMS

 year 2003 - aod

 TOTAL seas bias corr

 macc  .56 .90  .81  .77

 gems  .56 .91  .77  .79

 forec   .49 .81  .79  .77

 year 2003 – Angstrom

 TOTAL seas bias corr

 gems  .63 .87  .86  .85

 forec   .63 .88  .85  .84

 macc -.59 .81 -.86  .85

 year 2004 - aod

 TOTAL seas bias corr

 macc  .55 .90  .80  .77

 gems  .55 .90  .77  .79

 forec   .50 .83  .79  .77

 year 2004 - Angstrom

 TOTAL seas bias corr

 mac    .67 .89  .87  .87

 forec  .66 .89  .86  .86

 gems .65 .87  .87  .86

vs sun-photometry



overall Ang - largely unchanged

 year 2003 - aod

 TOTAL seas bias corr

 macc  .56 .90  .81   .77

 gems  .56 .91  .77  .79

 forec  .49 .81  .79  .77

 year 2003 – Angstrom

 TOTAL seas bias corr

 gems  .63 .87  .86  .85

 forec   .63 .88  .85  .84

 macc -.59 .81 -.86  .85

 year 2004 - aod

 TOTAL seas bias corr

 macc  .55 .90  .80  .77

 gems  .55 .90  .77  .79

 forec   .50 .83  .79  .77

 year 2004 - Angstrom

 TOTAL seas bias corr

 mac    .67 .89  .87  .87

 forec  .66 .89  .86  .86

 gems .65 .87  .87  .86

vs sun-photometry



summary

 assimilations improved AOD score

 better AOD seasonality is the main reason

 positive AOD

 stronger in GEMS than for the forecast

 weaker than forecast in MACC 

 ocean AOD more improved than land AOD

 Angstrom score largely unchanged 

 tendency to low bias only MACC

…still the score is far from perfect  



 now look at regions



regional stratifaction / data-pairs
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2004 AOD – how to quantify performance?

AOD difference to AERONET

 underestimate                          overestimate 



2004 AOD errors

error    0.44                           BIAS-sign

(score = 0.56)                                 positive negative 

temporal corr.

error

spatial correlat.

error

bias strength

error

increasing error 



2004 Ang – how to quantify performance?

Angstrom difference to AERONET

 underestimate                          overestimate 



2004 Angstrom errors

error  0.33                            BIAS-sign

(score = -0.67)                                positive negative 

temporal corr.

error

spatial correlat.

error

bias strength

error

increasing error 



 comparing regional errors



AOD 2003 MACC vs GEMS

 MACC better                                    GEMS better 



AOD 2004 MACC vs GEMS

 MACC better                                    GEMS better 



AOD 2003 MACC vs forecast

 MACC better                                    GEMS better  MACC better                                    forecast better 



AOD 2004 MACC vs forecast

 MACC better                                    GEMS better  MACC better                                    forecast better 



Ang 2004 MACC vs GEMS

 MACC better                                    GEMS better 



Ang 2004 MACC vs forecast

 MACC better                                    GEMS better  MACC better                                    forecast better 



 now regionally and monthly errors



AOD 2004 MACC vs GEMS

 MACC better                                    GEMS better 



AOD 2004 MACC vs forecast

 MACC better                                    forecast better 



 and now an alternative method



AeroCom

 open international science initiative for 

global aerosol modeling & comparisons to 

observations

 archive for aerosol global model data

 http://dataipsl.ipsl.jussieu.fr/AEROCOM

 IT infrastructure (idl, nco, perl, 10TB disk)

 annual workshops & sub-group activities

 emission, u-physics, indirect effects, forcing ..

 steering group: M.Schulz, S.Kinne, M.Chin

 funding (CNES, ESA, NASA, EU-projects)



AeroCom

 and now some AeroCom web approaches

http://dataipsl.ipsl.jussieu.fr/AEROCOM

 direct comparisons of simulations to 

 model simulation by many global model

 comparison at AERONET sites

 simple performance measures

 examples

 latitidinal distribution at matches to AERONET

 daily AOD correlations for the year 2003 



AOD   match by latitude 

GEMS assimilation MACC assimilation
with type stratification

AERONET AERONET



statistics benchmarking



lesson learned – AER-GEMS

… it takes more time than you think

 assimilations of MODIS AOD improve the 

forecast

 improvements are weaker over land

 ocean data are more accurate

 improvement is mainly of temporal nature

 „events‟ and overall seasonality    

 improvement of AOD (amount) comes 

often at the expense of Angstrom (size)

 additional assimilation of fine-mode-fraction ?



lesson learned – AeroCom

 common interests connect

 the need to evaluate modeling

 the need to connect model and data groups

 to be exposed to all available data

 to understand how data strength and limitation

 to communicate data needs

 a platform to interact

major elements

 data-sharing, web-tools, common papers

 (annual) meetings (= reunions)

 collaborative spirit (no money … no envy) 



extras



the scoring

 sample at spatial and temporal sub-scales

 month

 regions a

 spatial distribution score

 spatial (rank-) correlation

 general bias score

 compare ranks-sums 

 seasonality score  (only applied for annual scores)

 temporal (rank-) correlation



rank based scoring  - why ?

 rank based scoring reduces the weight of 
outliers (a better qualitative measure)

 rank correlation 

 are the ranks of data-pairs correlated ?

 rank bias

 do the rank-sums compare ?            … hereby 

data-set associated rank-sums are made up by the 

(value-) ranks of an array containing both data-sets

 example
 set 1:   1 7 8 value: 9 8 7 4 3 1      rank-sum 1:  11 
 set 2:   3 4 9 rank:  1 2 3 4 5 6      rank-sum 2:  10

bias = (1-2)/(1+2) = (11-10)/21 ~zero  a no clear bias



scoring over scales

 individual scores for region and months

 detail on local, seasonal performance and a 
tool for quantifying improvements



 combine monthly    (spatially correlation and 

bias scores) to annual scores  …  and add 
a seasonality score (using monthly medians) 



 combine regional annual scores into 
global scores (weigh by regional surface)

 one-number summary


 combine scores of different properties



what is a good score ?

 each score S is defined via an error  e

 S = 1 – w*e,    w  is a weight factor based on the 

interquartile range – not to over-

emphasize errors at low variability

 correlation error = (1- correlation coeff.) /2.0

 bias error = (sum1 – sum2) / (sum12)

the sign of the bias matters and is carried on

 1.0 is a perfect score   …   0.0 is poorest 

 total score =     bias score
* correlation score

(  * seasonality score)


