AEROCOM and GEMS-AER

lessons learned

Stefan Kinne

MPI-Meteorology Hamburg, Germany

outline

- o benefits from assimilation ?
- o comparing AOD and Angstrom of
 - forecast (ECMWF)
 - GEMS assimilation
 - MACC assimilation
- o strength and weaknesses
 - by 'subjective' comparison
 - by 'objective' scores

o exploring regional errors and differences
o finally something related to the title

the task

o to be evaluated monthly maps

- ECMWF aerosol forecasts for 2003 and 2004
 SO2/DMS, sulfate, o./bl. carbon (hydro. / nonhydro. each), seasalt (3*size), dust (3*size) : 12 tracers
- GEMS assimilations for 2003 and 2004
 MODIS (coll. 5) aerosol optical depth (no S removal)
- MACC assimilations for 2003 and 2004 (GFED3)
 MODIS (coll. 5) aerosol optical depth used

AOD (aerosol optical depth) (info on 'amount')
Angstrom parameter (info on 'aerosol size')

on terminology

o aerosol optical depth (AOD)

 extinction along a (vertical) direction due to scattering and absorption by aerosol
 here for the entire atmosphere

o here for the mid-visible (0.55μm wavelength)

Angstrom parameter (Ang)

spectral dependence of AOD in the visible spectrum
 small dependence (Ang ~ 0) ⇒ aerosol > 1µm size
 strong decrease (Ang > 1.2) ⇒ aerosol < 0.5µm size

the reference

0.6000

o sunphotometer AOD data

0.2000

0.0000

AERONET(~200) + GAW (15) + SKYNET (8)
 monthly statistics combined on a 1X1 (lat/lon) grid

0.4000

AOD simulations

as..

As..

year 2004

AOD simulations

year 2003

year 2004

AOD diff. to AERONET

year 2003

year 2004

maps

annual

fc.. forecast as.. GEMS As.. MACC

Angstrom simulations

year 2003

year 2004

annual maps

as..

As..

Angstrom diff. to AERONET

year 2003

year 2004

maps

annual

fc.. forecast as.. GEMS As.. MACC

first 'subjective' impressions

MODIS data assimilation

- Increases high AOD bias over land
- reduces Saharan dust
- reduces Angstrom over NH continents

• MACC vs GEMS

- reduced AOD for biomass over S.America
- (further) reduced Angstrom parameters

o quantify data performance by one number

develop a score such that contributing errors to be traceable back to

- bias
- spatial correlation
- temporal correlation
- spatial sub-scale
- temporal sub-scale

(e.g. region)

(e.g. month, day)

make this score outlier resistant

one possible scoring method

one number !

- 0.504

1 | is perfect 0 is poor

- 0.504 1

the closer to absolute 1.0 ... the better

product of sub-scores sign of bias spatial temporal the bias correlation correlation subsub-score sub-score score -0.504 = 0.9 * - 0.7 * 0.8the closer to absolute 1.0 ... the better

spatial stratification

-0.504 = 0.9 * - 0.7 * 0.8

111

***††**

spatial sub-scale scores

regional surface area weights

111

REGIONAL CHOICES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2

TRANSCOM regions

spatial stratification

temporal sub-scale scores (e.g. month or days)

temporal sub-scale scores (e.g. month or days)

how does the rank bias error work?

o set 1: 178 value: 987431 rank-sum 1: 11

o set 2: 3 4 9 rank: 1 2 3 4 5 6 rank-sum 2: 10

bias = (1-2)/(1+2) = (11-10)/21 ~zero ⇒ no clear bias

total score S

$$\circ S = S_{T} * S_{B} * S_{S}$$

= (1 - w * e_{T})
* (1 - w * e_{B})
* (1 - w * e_{S})

o all errors e are "rank-based"

- weight w = $(75\%pdf 25\%pdf \Delta e)/50\%pdf$... but not smaller than 0 & not larger than 1.0
- simply put ...
 no variability (w = 0): errors do not matter/count

$\odot e_B = (rank-sum1 - rank-sum2)/(sum12)$ (e_B between -1 and +1) (sign of e_B indicates bias)

how does the rank bias error work?

- set 1: 178 value: 987431 rank-sum 1: 11
- set 2: 3 4 9 rank: 1 2 3 4 5 6 rank-sum 2: 10

bias = (rs1-rs2)/(rs1+rs2) = (11-10)/21 ~zero ⇒ no bias

Oes = (1- rank_correlation coeff.)/2
 (correlated: e = 0, anti-correlated: e = 1)
 ...using regional data at one time

Oe_T = (1- rank_correlation coeff.)/2
 (correlated: e = 0, anti-correlated: e = 1)
 ...using time series of regional median data

scoring approach

Ø

- one single score ...
- without sacrificing spatial and temporal detail !
- stratification into error contribution from
 - bias
 - spatial correlation
 - temporal correlation
- robustness against outliers

still ... just one of many possible approaches
 now to some applications ...

o now with real data

questions

o how did the different simulations score?

- forecast
- GEMS assimilation
- MACC assimilation

o did assimilations improve the forecast?

- overall ?
- seasonality ?
- spatial correlation ?
- bias ?
- in what regions ?
- In what months ?

vs sun-photometry

annual global scores

Ø

- year 2003 aod
 TOTAL seas bias corr
- o macc .56 .90 .81 .77
- o gems .56 .91 .77 .79
- o forec .49 .81 .79 .77
- year 2003 Angstrom
 TOTAL seas bias corr
- o gems .63 .87 .86 .85
- o forec .63 .88 .85 .84
- o macc -.59 .81 -.86 .85

- o year 2004 aod
 - TOTAL seas bias corr
- o macc .55 .90 .80 .77
- o gems .55 .90 .77 .79
- o forec .50 .83 .79 .77
- year 2004 Angstrom
 TOTAL seas bias corr
- o mac .67 .89 .87 .87
- forec .66 .89 .86 .86
- o gems .65 .87 .87 .86

vs sun-photometry better overall AOD score

year 2003 - aod
 TOTAL seas bias corr
 macc .56 .90 .81 .77
 gems .56 .91 .77 .79
 forec .49 .81 .79 .77

year 2003 - Angstrom

 TOTAL seas bias corr

 gems .63 .87 .86 .85
 forec .63 .88 .85 .84
 macc -.59 .81 -.86 .85

year 2004 - aod
 TOTAL seas bias corr
 macc .55 .90 .80 .77
 gems .55 .90 .77 .79
 forec .50 .83 .79 .77

year 2004 - Angstrom
 TOTAL seas bias corr

- o mac .67 .89 .87 .87
- forec .66 .89 .86 .86
- o gems .65 .87 .87 .86

vs sun-photometry better AOD seasonality

year 2003 - aod
 TOTAL seas bias corr
 macc .56 90 81 .77
 gems .56 .91 77 .79
 forec .49 81 .79 .77

year 2003 - Angstrom

 TOTAL seas bias corr

 gems .63 .87 .86 .85
 forec .63 .88 .85 .84
 macc -.59 .81 -.86 .85

year 2004 - aod
 TOTAL seas bias corr
 macc .55 90 .80 .77
 gems .55 .90 .77 .79
 forec .50 83 .79 .77

year 2004 - Angstrom
 TOTAL seas bias corr

- o mac .67 .89 .87 .87
- forec .66 .89 .86 .86
- o gems .65 .87 .87 .86

vs sun-photometry

pos. AOD bias – worse in GEMS

year 2003 - aod
 TOTAL seas bias corr

- macc .56 .90 .81 .77
 gems .56 .91 .77 .79
 forec .49 .81 .79 .77
- year 2003 Angstrom

 TOTAL seas bias corr

 gems .63 .87 .86 .85
 forec .63 .88 .85 .84
 macc -.59 .81 -.86 .85

- year 2004 aod
 TOTAL seas bias corr
- macc .55 .90 .80 .77
 gems .55 .90 .77 .79
 forec .50 .83 .79 .77
- year 2004 Angstrom
 TOTAL seas bias corr
- o mac .67 .89 .87 .87
- o forec .66 .89 .86 .86
- o gems .65 .87 .87 .86

vs sun-photometry OVERAIL ANG - largely unchanged

- year 2003 aod
 TOTAL seas bias corr
- o macc .56 .90 .81 .77
- o gems .56 .91 .77 .79
- o forec .49 .81 .79 .77
- year 2003 Angstrom
 TOTAL seas bias corr
 gems .63 .87 .86 .85
 forec .63 .88 .85 .84
 macc .59 .81 .86 .85

- year 2004 aod
 - **TOTAL seas bias corr**
- o macc .55 .90 .80 .77
- o gems .55 .90 .77 .79
- o forec .50 .83 .79 .77
- year 2004 Angstrom
 TOTAL seas bias corr
- o mac .67 .89 .87 .87
- forec .66 .89 .86 .86
- o gems .65 .87 .87 .86

summary

- assimilations improved AOD score
- better AOD seasonality is the main reason
 positive AOD
 - stronger in GEMS than for the forecast
 - weaker than forecast in MACC
- ocean AOD more improved than land AOD
- Angstrom score largely unchanged
 - tendency to low bias only MACC

o ...still the score is far from perfect

o now look at regions

regional stratifaction / data-pairs

REGIONAL CHOICES

2004 AOD – how to quantify performance?

AOD difference to AERONET

← underestimate

overestimate \rightarrow

2004 AOD errors

2004 Ang – how to quantify performance?

Angstrom difference to AERONET

-0.600	-0.300	0.0000	0.3000	

← underestimate

overestimate \rightarrow

2004 Angstrom errors

comparing regional errors

AOD 2003 MACC vs GEMS

← MACC better

GEMS better \rightarrow

AOD 2004 MACC vs GEMS

← MACC better

GEMS better \rightarrow

AOD 2003 MACC vs forecast

score-diff

EA3_or-Es3_or_vs. AERONET

← MACC better

forecast better \rightarrow

AOD 2004 MACC vs forecast

← MACC better

forecast better \rightarrow

Ang 2004 MACC vs GEMS

← MACC better

GEMS better \rightarrow

← MACC better

forecast better \rightarrow

o now regionally and monthly errors

AOD 2004 MACC vs GEMS

← MACC better

GEMS better \rightarrow

AOD 2004 MACC vs forecast

← MACC better

forecast better \rightarrow

o and now an alternative method

AeroCom

 open international science initiative for global aerosol modeling & comparisons to observations

- archive for aerosol global model data
 - http://dataipsl.ipsl.jussieu.fr/AEROCOM
 - IT infrastructure (idl, nco, perl, 10TB disk)
- o annual workshops & sub-group activities
 - emission, u-physics, indirect effects, forcing ..
- o steering group: M.Schulz, S.Kinne, M.Chin
 - funding (CNES, ESA, NASA, EU-projects)

AeroCom

o and now some AeroCom web approaches

http://dataipsl.ipsl.jussieu.fr/AEROCOM

direct comparisons of simulations to

- model simulation by many global model
- comparison at AERONET sites
- simple performance measures

o examples

- Iatitidinal distribution at matches to AERONET
- daily AOD correlations for the year 2003

AOD match by latitude

GEMS assimilation with type stratification

AERONET

MACC assimilation

AERONET

statistics benchmarking

Progress of ECMWF-model assimilation MODIS-AOD into IFS

Aerocom global benchmarking against Aeronet+GAW+SKYNET – 1079 months / 2003 daily data / Stations below 1000m

	Correlation	RMS	Bias
1 st forward model,SO4 error	0.70	0.13	+0.034
1 st assimilation GEMS, SO4	0.83	0.11	+0.057
2 nd GEMS assimilation, SO4	0.82	0.11	+0.047
1 st MACC assimilation,	0.86	0.09	+0.005

lesson learned – AER-GEMS

- it takes more time than you think
 assimilations of MODIS AOD improve the forecast
- o improvements are weaker over land
 - ocean data are more accurate
- improvement is mainly of temporal nature
 - 'events' and overall seasonality
- improvement of AOD (amount) comes often at the expense of Angstrom (size)
 additional assimilation of fine-mode-fraction ?

lesson learned – AeroCom

common interests connect

- the need to evaluate modeling
- the need to connect model and data groups
 to be exposed to all available data
 - **o** to understand how data strength and limitation
 - **o** to communicate data needs
- a platform to interact

o major elements

- data-sharing, web-tools, common papers
- (annual) meetings (= reunions)
- collaborative spirit (no money ... no envy)

extras

the scoring

sample at spatial and temporal sub-scales

- month
- regions
 ⇒
- spatial distribution score
 spatial (rank-) correlation
- o general bias score
 - compare ranks-sums

Seasonality score (only applied for annual scores)
 temporal (rank-) correlation

rank based scoring - why ?

- rank correlation
 - are the ranks of data-pairs correlated ?

o rank bias

- do the rank-sums compare? ... hereby data-set associated rank-sums are made up by the (value-) ranks of an array containing both data-sets
- example
 - set 1: 178 value: 987431 rank-sum 1: 11
 set 2: 349 rank: 123456 rank-sum 2: 10

bias = (1-2)/(1+2) = (11-10)/21 ~zero ⇔ no clear bias

scoring over scales

individual scores for region and months

- detail on local, seasonal performance and a tool for quantifying improvements
- combine monthly (spatially correlation and bias scores) to annual scores ... and add a seasonality score (using monthly medians)
- combine regional annual scores into global scores (weigh by regional surface)
 one-number summary
- combine scores of different properties

• each score **S** is defined via an error **e**

- S = 1 w*e, W is a weight factor based on the interquartile range not to overemphasize errors at low variability
- correlation error = (1- correlation coeff.) /2.0
- bias error = (sum1 sum2) / (sum12)
 the sign of the bias matters and is carried on