NWP Verification: what can be learnt?

Slide 1

Anna Ghelli ECMWF, Reading, UK

anna.ghelli@ecmwf.int

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

Time series Acc=60% N hemisphere

Slide 2

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

ECMWF

Time series Acc=60% N hemisphere ERA Interim forecast

Slide 3

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

CECMWF

OUTLINE

- Verification: WHY?
- Metrics used in NWP
- What is the truth?
 - Observations (what does the model produce?)
 - Analysis
- Spatial methods
- Suggestions on a verification framework

Slide 4

Why verify?

- Administrative purpose
 - Monitoring performance
- Scientific purpose
 - Identifying and correcting model flaws
 - Forecast improvement
- Economic purpose
 - Improved decision making
 - "Feeding" decision models or decision support systems
- Forecasters
 - Understanding biases
 - Understanding strengths and weaknesses of models

Slide 5

Verification

Forecast Attributes

Observations availability/analysis

Visualisation

Reference system

The questions:

- In what locations does the model have the best performance?
- Are there regimes in which the forecasts are better or worse?
- Is the probability forecast well calibrated (i.e., reliable)?
- Do the forecasts correctly capture the natural variability of the weather?
- Is the genesis in the right location?
- Is the landfall accurate?
- Which model is better according to some specified scoring rule?

ECMWF

Is there any systematic bias?

Which verification technique?

Tropical cyclone forecast

Who are our users? **Aggregation/stratification?** What do we want to measure?

3-day forecast 1012

Bias

Position/ intensity error Attribute of features Reliability Discrimination

ECMWF

7

Forecast quality versus forecast value

 A forecast has high
 QUALITY if it predicts the observed conditions well according to some objective or subjective criteria.

 A forecast has VALUE if it helps the user to make a better decision.

Quality but no value

Value but no quality

Slide 8

Scores: formulation

• Root Mean Square Error:
$$E = \sqrt{(fc - an)^2}$$

Bias:

$$BIAS = FC - OBS$$

Mean Absolute Error :

$$MAE = |FC - OBS|$$

Anomaly Correlation:

$$ACC = \frac{(fc - c)(an - c)}{\sqrt{A_{fc}A_{an}}}$$
$$A_{fc} = \overline{(fc - c)^2}$$
$$A_{an} = \overline{(an - c)^2}$$

Measures accuracy Range: 0 to infinity perfect score = 0

Measures bias Range: -infinity to +infinity perfect score = 0

Measures accuracy Range: 0 to infinity perfect score = 0

Measures accuracy Range: -100% to 100% perfect score = 100%

ECMWF

Contingency tables

		Event	Event observed		
		forecast	Yes	No	Marginal total
Frequency Bias	$FBI = B = \frac{(a+b)}{a+b}$	Yes	Hit	False alarm	Fc Yes
	(a+c)	No	Miss	Correct non-event	Fc No
Hit Rate $H = POD = \frac{a}{a}$		Marginal total	Obs Yes	Obs No	Sum total
	1				
False Alarm Rate $= \frac{b}{}$		Event	Event observed		
	(b+d)	forecast	Yes	No	Marginal total
Equitable Threat Score		Yes	a	b	a + b
		No	c	d	c + d
$ETS = \frac{(a-a_r)}{a} = \frac{(a+b)(a+c)}{a}$		Marginal total	a+c	b + d	a + b + c + d =n
$(a+b+c-a_r)$	n				

True Skill Score (also known as Pierce's Skill Score)

$$TSS = PSS = \frac{ad - bc}{(a+c)(b+d)}$$

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010 Slid

Slide 10

Evaluating model precipitation forecasts

Evaluating "rare" events

Rainy season in Europe October-April

Shaded areas represent the 90% confidence interval

Observation/model matching

Identifying observations that represent the forecast event

Gridded forecasts and observations need to be matched

- Point-to-grid
 - Match obs to closest gridpoint **
 - Average all observations within ** the grid box?
- Grid-to-point
 - Interpolate? ٠
 - Take largest value? *

The matching game: Strive for an independent dataset

Approaches:

- Model to observations → model output is manipulated to become comparable to observations
- Observations to model → observations are manipulated to become comparable to model output

-- A different perspective --

- The model will not produce exact results for scales smaller than its own spatial scale.
- * Comparisons between model forecast value and observations rely on either interpolation or close neighbour method.
- Precipitation shows large variability and the precipitation amount measured in a specific location, may not be representative of an area (under sampling)
- Precipitation forecast should be interpreted as an areal value rather than a point value.
- High resolution network stations used to produce mean values of precipitation to be attributed to each grid-point. Such values are then compared to the model forecast. "Up-scaling" of the information contained in the observations to make comparisons that are fairer to model

The Up-scaling technique

- There are many methods available to up-scale observations to the model resolution
- We have used a simple averaging procedure of all the observations contained in a model gridbox
- Alps: SYNOP coverage, high-density observations and up-scaled observed values for Sept. 20, 1999

-- A different perspective --

FBI Threshold > 1mm/24h

Cyan: precipitation analysis (shaded area indicate uncertainty) Green: Synops on GTS (shaded area indicates uncertainty)

The role of the analysis in verification

Analyses are model dependent

- Allows to use a number of different type of sensors to provide a coherent analysis for the model → this out-weight the drawback of model contamination
- Good if used for specific purposes e.g. when performance needs to be assessed for scales that the model can resolve and for comparison of same model (operational vs. experimental suite)
- Multi-analysis against observations scores better than single analysis
- Use of randomly drawn analyses for comparative verification of multiple models.

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010 Slide 17

Scores: what they can/cannot offer

- Overall measures of skill (accuracy, bias)
- Minimal diagnostic information *
- Cannot answer the following questions:

- What went wrong? What was right? *
- Does the forecast look realistic? *
- How can I improve the forecast? *
- How can I use the forecast to make a decision? **

Spatial verification

Standard verification

- Need matching between forecast and observation
- Ouble penalty
 Ouble
 Development
 Developmen
- * Do not say source of error
- * Do not say how to improve forecasts

ECMWF

19

Feature-based approach (CRA) Ebert and McBride, J. Hydrol., 2000

- Define entities using thresholds (Continuous Rain Areas)
- Horizontally translate forecasts until a matching pattern criterion is met:
 - Minimum total squared error between forecast and observation
 - Maximum correlation
 - Maximum overlap
- The displacement is the vector difference between the original and the final location of the forecasts

Feature based approach (CRA)

Total mean squared error

$$MSE_{total} = MSE_{displacement} + MSE_{volume} + MSE_{pattern}$$

The displacement error is the difference between the mean squared error before and after translation

$$MSE_{displacement} = MSE_{total} - MSE_{shifted}$$

The volume error is the bias in mean intensity

$$MSE_{volume} = (\overline{F} - \overline{X})^2$$

FCMWF

Where F and X are the mean forecast and observed values after shifting

 The patter error, computed as residual, accounts for the difference in structure

$$MSE_{pattern} = MSE_{shifted} - MSE_{volume}$$

Spatial Verification Intercomparison Project

http://www.ral.ucar.edu/projects/icp/index.html

Test cases

✤ Results

Papers

Code

22

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

MODE object matching/merging

24h forecast of 1h rainfall on 1 June 2005

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

Compare attributes:

- centroid location
- intensity distribution

🔹 - area

orientation

* - etc.

When objects not matched:

- 🔹 false alarms
- missed events
- rain volume
- etc.

23

MODE methodology

ICAP workshop on Aerosol Verification, Oxford, Sept. 2010

24

Designing a verification framework

Stablish who are the users of the verification

- What is the real meaning of the parameter calculated in the model? It is an areal quantity or a point value? This may have some repercussions in the way the scores/data are calculated.
- Define a set of top level scores (administrative purposes/ economic purpose)
- Define a complementary set of scores which may address needs of specific users (scientific purpose/user purpose)
 - Time series will show trends, but case studies are relevant to understand what went wrong!
 - Use confidence intervals on the scores

