

Validation of Aerosols in the MetUM

An overview of current aerosol verification tools

Jane Mulcahy & Keith Ngan Contributors: R. Crocker, Y. Pradhan, M.E. Brooks, D. Walters

This presentation covers the following areas

- Overview of aerosol work in NWP context in the Met Office
- Overview of current verification methods for dust aerosol forecasts.
- Application of Spatial Verification Technique
- Developments in satellite retrievals and data assimilation of SEVIRI AOD into South Asian Model (SAM) (Keith Ngan)

Aerosol Forecasting

Impact of dust on model radiation

Addressing systematic bias in model OLR

Routine near-real time evaluation of MetUM OLR and Albedo is being carried out under the SINERGEE Project (Rich Allan, Uni. Reading)

Validation using AERONET

Validation of operation SAM dust forecasts

500nm AOD vs AERONET

Verification Metrics

Equitable Threat Score:

Fraction of observed events that were correctly predicted, reduced by the numbers you would expect by chance.

0 – no skill

1 – perfect

Spatial Verification using SEVIRI AOD

Ric Crocker

Spatial Verification Method

Ebert and McBride (2000)

- Point by point calculations can over-penalise forecast
- Want to assess overall skill of model and areas of strengths and weaknesses
- Use SEVIRI AOD over land (Pradhan & Saunders, 2009)
- Identify areas exceeding a threshold (an 'event'), find equivalent area in forecast and displace the feature until the best match is found.

 Decompose the resulting error into a displacement, volume and pattern error.

$$MSE = MSE_{displacement} + MSE_{volume} + MSE_{pattern}$$

Forecast Event

0.36

-0.319

	1016	Cuat
	<0.50	≥0.50
0.50	10515	1325
0.50	2328	530

Validation statistics for 20)100302 n:	=14698	Verif. grid=0.150°
	Analysed F	orecast	Mean abs error RMS error = 0.3
# gridpoints gt Threshold Average AOD ()	2858 1.59	1855 1.74	Correlation coeff Bias score = 0.6 Probability of def
Maximum AOD ()	2.37	1,41	False alarm ratio

Mean abs error = 0.26 RMS error = 0.36 Correlation coeff = 0.102 Bias score = 0.649 Probability of detection = 0.185 False alarm ratio = 0.714 Hanssen & Kuipers score = 0.074 Equitable threat score = 0.044

SAM 12-12 fcst 20100302 n=742 (19.10°,44.20°) to (26.90°,50.05°)
Verif, grid=0.150° CRA threshold=0.5 AOD

	Analysed	Forecast
# gridpoints ≧0 AOD	523	376
Average AOD ()	0.61	0.49
Maximum AOD ()	1.42	1.41

Displacement (E,N) =	[0.30°,-0.60°]
	original
RMS error ()	

Error Decomposition:
Displacement error 37.0%
Volume error 6.9%
Pattern error 56.2%

Correlation coefficient

Point by point analysis AFTER displacement

Event displacement

Improvement in statistics after displacement

Error Decomposition (shape of forecast event is responsible for 56% of the error)

Validation using SEVIRI AOD

Can be used to build feature contingency tables:

		Intensity		
		Too little	~ Correct	Too much
Location	Close	Undersetimate	Hit	Overestimate
	Far	Missed event	Missed location	False alarm

Satellite retrievals and data assimilation

Yaswant Pradhan, Keith Ngan

MSGAOD comparison

- MSGAOD compares well against AERONET
- Atmospheric correction using UM/ECMWF forecast fields demonstrates the sensitivity of model accuracy to Tsurf and CWV

Regional desert dust forecasting system

Observations

- Use 550nm aerosol optical depth derived from SEVIRI
- R is assumed to be diagonal (rms error =0.37 from comparisons with AERONET)

Data assimilation

- Approach follows ECMWF's [Benedetti et al. 2009].
- Research system only (3d-var, LAM)

Standard diagnostics

Various comparisons with AERONET have been considered

forecast

with DA

Other diagnostics

- Analysed pdf is intermediate between analysed and observed pdfs.
- · fails to capture long tail

Single-cycle results: 23-Jan-2010

 Analysis error is smaller than background error for O-B>0

Please take home the following points

- Dust forecasts now an operational product in SAM.
- Working towards including aerosols in global NWP.
- Model validation crucial to the continual development and improvement of aerosol products.
- Highlighted need for informative verification metrics.

Questions