Error bars and beyond

Jim Hansen, NRL Walter Sessions, NRL Jeff Reid,NRL May, 2011

Why ensembles

- Traditional justification
 - Predict expected error
- (Perhaps) more valuable justification
 - Improve observation systems
 - Improve data assimilation
 - Statistically probe system dynamics for improved understanding

Lorenz '63 attractor

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

Blue dots represent solutions to the equations

The system lives here
It does not live here

time

t=0

FUKUSHIMA

75°N 75°N 5 65°N 65°N 55°N 55°N 45°N 45°N 35°N 35°N 25°N 25°N 15°N 15°N 120°E 130°E 140°E 150°E 160°E 170°E 180° 170°W 160°W 150°W 140°W 130°W 120°W 110°W 100°W

Wednesday 30 March 2011 00UTC NAAPS Forecast t+000 Wednesday 30 March 2011 00UTC Valid Time Aerosol Ensemble (20 Member) 0.04 Aerosol Optical Depth at 550nm

Plots Generated Wednesday 30 March 2011 20UTCNRL/Monterey Aerosol Modeling NOT OFFICIAL FNMOC NAAPS RUN

Sessions, et al

Menagerie of ensembles

- Single model ensemble
- Multi-parameterization ensemble
- Multi-parameter ensemble
- Multi-resolution ensemble
- Additive stochastic ensemble
- Multiplicative stochastic ensemble
- Poor-man's ensemble
- Ensemble of ensembles
- Hybrid ensemble

Ensemble verification

Measures of probabilistic quality

- Sharpness
 - Probabilistic forecasts are different from climatology.
- Reliability
 - 30% probability events happen 30% of the time.
- Goal is to produce as sharp a probabilistic forecast as possible subject to the constraint of reliability.

Post processing

What's in a name

• "Post-processing" has many connotations:

- Statistical correction of a forecast
- Generation of diagnostic quantities (e.g. AOT)
- Processing that is done on transmitted data to ships and shore facilities (this has caused me no end of grief)

Note: you could post-process a message containing a post-processed quantity from post-processed fields!

Suggested vocabulary

- Calibration instead of post-processing
 - Adjusting the output of a model to agree with the value of the applied standard (the observation), within a specified accuracy.
- Adjusting
 - Methods for calibrating the mean (or deterministic forecast)
 - Bias correction, Kalman filter, linear regression, etc.
 - Methods for calibrating the distribution
 - Analogs, BMA, rank histogram, etc.
- Applied standard
 - Analyses
 - Observations

Old: "Downscaling"

New: "Our Kalman filter technique is a method for calibrating the ensemble mean using observations as the applied standard"

Ensembles aren't a silver bullet

- Running a crap model 100 times doesn't make it any less crap
 - An ensemble is only as good as the model(s) that go into it
- Multi-model ensemble forecasts cannot give you correct probabilistic forecasts (in fact, we probably shouldn't even call them probability forecasts!)
 - But they can provide better probabilistic forecasts than single model ensembles

time

Impact of model inadequacy

- We can only aspire to the limitations imposed by chaos.
- In the same way that initial condition uncertainty guarantees we will never have perfect deterministic forecasts, model uncertainty guarantees we will never have perfect probabilistic forecasts.
- In the same way that deterministic forecasts in the face of initial condition uncertainty are still useful, so too are "probabilistic" (distribution? odds?) forecasts in the face of model uncertainty.

Beyond error bars

- We want to leverage the ensemble to
 - Improve our initial conditions
 - Improve our understanding of dynamics
 - Help hedge forecasts
 - Target observations
- This information is obtained by exploiting the state-dependent, space-time statistical relationships within the ensemble forecast.

Ensemble sensitivity

Relationship between different variables at different times

$$\overline{\mathbf{y}}(\boldsymbol{\tau}_u) = f(\overline{\mathbf{x}}(\boldsymbol{\tau}_s))$$

Add perturbations

$$\overline{\mathbf{y}} + \mathbf{y}' = f(\overline{\mathbf{x}} + \mathbf{x}')$$

Taylor expansion

$$f(\overline{\mathbf{x}} + \mathbf{x}') = f(\overline{\mathbf{x}}) + \frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} \mathbf{x}'$$

Substitute

$$\overline{\mathbf{y}} + \mathbf{y}' = f(\overline{\mathbf{x}}) + \frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} \mathbf{x}'$$

Cancel terms

$$\mathbf{y}' = \frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} \mathbf{x}'$$

Multiply both sides by \mathbf{x}'^{T}

$$\mathbf{y}'\mathbf{x}'^{T} = \frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} \mathbf{x}'\mathbf{x}'^{T}$$

Apply an expectation operator

$$\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} \operatorname{cov}(\mathbf{x})$$

Rearrange

$$\frac{\partial f(\overline{\mathbf{x}})}{\partial \mathbf{x}} = \operatorname{cov}(\mathbf{x}(\tau_s), \mathbf{y}(\tau_u)) \operatorname{cov}(\mathbf{x}(\tau_s))^{-1}$$

Sensitivity of 24hr aod to 18hr aod overplotted with mean aod

Sensitivity of 24hr aod to 18hr v overplotted with mean v

Sensitivity of 24hr aod to 24hr ν overplotted with mean ν

Where does the value of ensembles lie for aerosols?

- Routine analysis of forecast products
- Partition sensitivities between meteorology and sources
- Identify sensitivity between what we can observe (e.g. AOD) and what we care about (e.g. PM_{2.5})
- Target observing assets that will have the largest impact on what we care about
- Identify strong sensitivities between meteorology and aerosols in an inline model.
- Multi-model sensitivity (although can be difficult to interpret)