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What is Data Assimilation?

Observations combined with a Model forecast...

...to produce an analysis
(best possible estimate).
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Example: Estimating the Temperature Outside

An observation has a value ( * ),
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Example: Estimating the Temperature Outside

An observation has a value ( * ),
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and an error distribution (red curve) that is associated with the
instrument.
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Example: Estimating the Temperature Outside

Thermometer outside measures 1C.
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Instrument builder says thermometer is unbiased with +/- 0.8C gaussian
error.
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Example: Estimating the Temperature Outside

Thermometer outside measures 1C.
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The red plotis P(T'1T,), probability of temperature given that T, was
observed.
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Example: Estimating the Temperature Outside

We also have a prior estimate of temperature.
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The green curve is P(T | C); probability of temperature given all available
prior information C.
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Example: Estimating the Temperature Outside

Prior information C can include:

1. Observations of things besides T;

2. Model forecast made using observations at earlier times;
3. A priori physical constraints ( T > -273.15C );

4. Climatological constraints (-30C < T <40C).
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Combining the Prior Estimate and Observation

Prior
Bayes R(T,|T.C)P(TIC)—
Theorem: P(T | TO,C)
s \ P(T,1C)
Posterior: Probability —— —
of T given Likelihood: Probability that T, is
observations and observed if T is true value and given
Prior. Also called prior information C.

update or analysis.
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Combining the Prior Estimate and Observation

Rewrite Bayes as:

P(T,\IT,C)P(TIC)  P(T,IT,C)P(TIC)

P(T,IC)  [P(T,1x)P(x1C)dx

P(T,IT,C)P(TIC)

normalization

Denominator normalizes so Posterior is PDF.
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Probability
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Combining the Prior Estimate and Observation

P(T,|T,C)P(T|C)

normalization

P(TIT,,C) =

4 L
Prior PDF
% 2 0 >

Temperature
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Combining the Prior Estimate and Observation

P(T,|T,C)P(TIC)

P(TIT,,C) = T
normalization
Obs. Likelihood
-4 2 0 2 4

Temperature
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Probability
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Combining the Prior Estimate and Observation

CP(T,1T,C)P(TICL>

P(TIT,,C) =

normalization

\—Likelihood
X Prior ]

-~ \Numerator

=4 2 0
Temperature




Combining the Prior Estimate and Observation

P(T,|T,C)P(TIC)

P(T1T,,C) = o
normalization
Area Under Product is Denominator
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Probability

Combining the Prior Estimate and Observation

P(T,|T,C)P(TIC)

P(T | Eac) = . .
normalization
Posterior PDF
0.4}
0.2
% 2 0 > 4

Temperature
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Consistent Color Scheme Throughout Tutorial

Green = Prior
Red = Observation

Blue = Posterior

Black = Truth

(truth available only for ‘perfect model’ examples)




Probability
© ©O
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Combining the Prior Estimate and Observation

P(T1T,.C) < P T.OPT1C)

normalization

Generally no analytic solution for Posterior.

Pésterior PDI5
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Probability
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Combining the Prior Estimate and Observation

P(T1T,.C) < P T.OPT1C)

normalization

Gaussian Prior and Likelihood -> Gaussian Posterior

Pésterior PDI5
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Combining the Prior Estimate and Observation

For Gaussian prior and likelihood...

Prior P(T | C) = Normal(Tp ,O’p)
Likelihood P(T,1T.C) = Normal(T,,0,)
Then, Posterior P(TT,,C)=Normal(T,,0,)

-1
-2 -2
0, = (07 +07)

With N :
I = au[ap I, +0, TO]
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,)

B. Example: T, =T, + AtT,




The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT,.

2. If posterior estimate at time t, is Normal(T,, ,, o, 1) then
prior at t, is Normal(T , ,, o,, ,).

Tp2= Tyt AT,

Opo = (At + 1) oy 4

u,1»




The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT,.

2. If posterior estimate at time t, is Normal(T,, ,, o, 1) then
prior at t, is Normal(T , ,, o,, ,).

3. Given an observation at t, with distribution Normal(t,, o)
the likelihood is also Normal(t,, o).
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The One-Dimensional Kalman Filter

Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT,.

If posterior estimate at time t, is Normal(T , 4, o, ;) then
prior at t, is Normal(T , ,, o,, ,).

Given an observation at t, with distribution Normal(t,, o)
the likelihood is also Normal(t,, o).

The posterior at t, is Normal(T, ,, 6,,) where T,, and o,
come from page 19.
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:
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Temperature
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:

g 0.4 Sample Mean

Q0

kS Prior PDF Sample

r.ci) 0.2 Standard Deviation -
0 ¥* ¥ ¥* ¥k
-4 -2 0 2 4

Temperature

(T, -T) /(N -1)

and sample standard deviation

N
Use sample mean | = ETn/N 5
n=1 —
to determine a corresponding continuous distribution NOi’mal(T,GT)
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

If posterior ensemble at time t,is T1,, n=1, ..., N

- t1 Posterior
- Ensemble

6 4 2
Temperature
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

If posterior ensemble at time t,is T1,, n=1, ... N,
advance each member to time t, with model, T, ,=L(T; ,) n=1, ..., N.

- t2 Prior
- Ensemble
%k: % * %lei%

t2 PDF

- 11 Postenor
Ensemble "

-6 -4 —2 # 2
Temperature

coo o000

t1 PDF
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

Same as advancing continuous pdf at time t, ...

-6 -4 —2 # 2
Temperature
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

Same as advancing continuous pdf at time t,
to time t, with model L.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

)
:-O_i‘ 04 ........................................................
0
©
e
& 0.2 5 5
Prior Ensemble
0 ¥* ¥ * ¥k :
-4 -2 0 2 4
Temperature
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

g’o qF S
5 Prior PDF
4y : '
e
& 0.2 5 5
Prior Ensemble
0 ¥ * ¥k
-4 -2 0 2 4
Temperature

Fit a Gaussian to the sample.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

' Obs. Likelihood

> :
§ 0.4 .....................................
L0
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) * . %

/! 2 0 > 4

Temperature

Get the observation likelihood.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF

Obs. Likelihood

O
»

Probability
O
N

Temperature

Compute the continuous posterior PDF.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF , :

_ | _
:'O_i‘ 0.4 .......................................................
0
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e
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o % * %k .

-4 2 0 2

Temperature

Use a deterministic algorithm to ‘adjust’ the ensemble.




A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF , |

. . _
§0-4 .......................................................
L0
4]
0
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~4 -2 0 2 4

Temperature

First, ‘shift’ the ensemble to have the exact mean of the posterior.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF

Probability
o O
\S) N

Variance Adjusted ¥ % %
Mean Shifted % /% %

-4 -2 0 2 4
Temperature
First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.
Sample statistics are identical to Kalman filter.




We now know how to assimilate a single observed variable.

Data

Assimilation

Research
Testbed

Section 2: How should observations of one state variable impact an
unobserved state variable?




Single observed variable, single unobserved variable

So far, we have a known observation likelihood for single variable.
Now, suppose the prior has an additional variable.
Examine how ensemble members update the additional variable.

Basic method generalizes to any number of additional variables.




Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior
joint distribution.

One variable is observed,
temperature at Boulder.

What should happen to an
unobserved variable, like
temperature at Denver?
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Unobserved State Variable
N
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% % % % %
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior
E . % * joint distribution.
. - One variable is observed.

Update observed variable as in
previous section.

W A
WUIRUI

Unobs.

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior
E . % * joint distribution.
. - One variable is observed.

Update observed variable as in
previous section.

W A
WUIRUI

Unobs.

-2 0 2 4
Observed Variable

BENCAR & N(; ICAP Workshop; 11 May 2011




Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior
E . % * joint distribution.
. - One variable is observed.

Update observed variable as in
previous section.

W A
WUIRUI

Unobs.

-2 0 2 4
Observed Variable

BRONCAR & N(; ICAP Workshop: 11 May 2011

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH




Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

2 4.% Y% * joint distribution.
* . .
533 . One variable is observed.

*E * * Compute increments for prior
ensemble members of observed
variable.

Increments
* *
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

2 4.% Y% * joint distribution.
* . .
533 . One variable is observed.

*E * * Compute increments for prior
ensemble members of observed
variable.

Increments
* *
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

2 4.% Y% * joint distribution.
* . .
533 . One variable is observed.

*E * * Compute increments for prior
ensemble members of observed
variable.

Increments
* *
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

842 T joint distribution.
o, 4 : ¥ | |
533 . One variable is observed.
*E * * Compute increments for prior
ensemble members of observed

variable.

Increments

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

842 T joint distribution.
o, 4 : ¥ | |
533 . One variable is observed.
X Compute increments for prior
ensemble members of observed

variable.

Increments

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior

2 4.§E . % * joint distribution.
533 . One variable is observed.
— Using only increments
guarantees that if observation
o had no impact on observed
* * variable, unobserved variable is
Increments unchanged (highly desirable).
it
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state
variables

Assume that all we know is prior
joint distribution.

How should the unobserved
variable be impacted?

First choice: least squares.
Equivalent to linear regression.
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Unobserved State Variable
N

3.5 Same as assuming binormal
prior.
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Observed Variable
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Ensemble filters: Updating additional prior state
variables

P 5
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Observed Variable
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Have joint prior distribution of
two variables.

How should the unobserved
variable be impacted?

First choice: least squares.

Begin by finding least squares
fit.




Ensemble filters: Updating additional prior state
variables
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Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
variable.

Equivalent to first finding image
of increment in joint space.




Ensemble filters: Updating additional prior state
variables

Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
* variable.

Equivalent to first finding image
of increment in joint space.

O

>

)
¥
*

¥

¥*

w0
3))

Unobserved State Variable
N

3*
Igcrements '*';* Hk
K
-2 0 2 4

Observed Variable

BRONCAR ) ICAP Workshop; 11 May 2011 0g 52




Ensemble filters: Updating additional prior state
variables

Have joint prior distribution of
two variables.

Next, regress the observed
/ variable increments onto

increments for the unobserved

variable.

Equivalent to first finding image

of increment in joint space.
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Ensemble filters: Updating additional prior state
variables
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Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
variable.

Equivalent to first finding image
of increment in joint space.




Ensemble filters: Updating additional prior state
variables
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Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
variable.

Equivalent to first finding image
of increment in joint space.




Ensemble filters: Updating additional prior state
variables
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* ¥
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Have joint prior distribution of
two variables.

Regression: Equivalent to first
finding image of increment in
joint space.

Then projecting from joint space
onto unobserved priors.




Ensemble filters: Updating additional prior state
variables

Have joint prior distribution of

o > two variables.
S .6l Regression: Equivalent to first
Z, 1. finding image of increment in
= ..
B 4 joint space.
§ * Then projecting from joint space
S5 / onto unobserved priors.
2 3.
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Increments
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Ensemble filters: Updating additional prior state
variables

O

Unobserved State Variable
N

A
7

3.5
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Increments
PE——
-2 0 2

Observed Variable
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Have joint prior distribution of
two variables.

Regression: Equivalent to first
finding image of increment in
joint space.

Then projecting from joint space
onto unobserved priors.




Ensemble filters: Updating additional prior state
variables

O

Unobserved State Variable
N

D
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PR
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Observed Variable
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Have joint prior distribution of
two variables.

Regression: Equivalent to first
finding image of increment in
joint space.

Then projecting from joint space
onto unobserved priors.




Ensemble filters: Updating additional prior state
variables

O

Unobserved State Variable
N
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Have joint prior distribution of
two variables.

Regression: Equivalent to first
finding image of increment in
joint space.

Then projecting from joint space
onto unobserved priors.




Ensemble filters: Updating additional prior state
variables

Now have an updated
(posterior) ensemble for the
« X unobserved variable.
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Ensemble filters: Updating additional prior state
variables

Now have an updated
(posterior) ensemble for the
unobserved variable.

Fitting Gaussians shows that
mean and variance have
changed.

© 5
8 |« *
S45 «
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2 Prior State Fit
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B =1
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Obs.
BNNCAR Q) ICAP Workshop; 11 May 2011 0g 62
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N/




Ensemble filters: Updating additional prior state
variables

Now have an updated
(posterior) ensemble for the

O

e ior Fif |
% unobserved variable.
> 5 Fitting Gaussians shows that
g . mean and variance have
3 changed.
§ 3.5 Other features of the prior
E Prior State Fit distribution may also have
= 3 changed.

3

2024

Obs.

h NCAR ICAP Workshop; 11 May 2011 pg 63

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH




Ensemble Filter for Large Geophysical Models

1. Use model to advance ensemble (3 members here)
to time at which next observation becomes available.

Ensemble state

estimate after using Ensemble state
previous observation at time of next
(analysis) observation

b _— ~ (prior)

* — tk+1

* — -

ICAP Workshop; 11 May 2011



Ensemble Filter for Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by
applying forward operator h to each ensemble member.

Theory: observations

h h from instruments with
h uncorrelated errors can
be done sequentially.
tk
* tk+1
*
*

— e 4

ﬁ NCAR @ ICAP Workshop; 11 May 2011 og 65




Ensemble Filter for Large Geophysical Models

3. Get observed value and observational
error distribution from observing system.

- ; i y
M h
tk
:- S
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Ensemble Filter for Large Geophysical Models

4. Find the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

Note: Difference between
various ensemble filters is
Ik primarily in observation
iIncrement calculation.

— e 4
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Ensemble Filter for Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

heory: impact of

observation increments on

— - each state variable can be
handled independently!

eeeeee



Ensemble Filter for Large Geophysical Models

6. When all ensemble members for each state variable
are updated, there is a new analysis. Integrate to time
of next observation ...

y —— - y

M h
tk+2
tk ;\ B
:_ /’(\ —>
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Ensemble Filter for Large Geophysical Models

A generic ensemble filter system like DART just needs:
1. A way to make model forecasts;

y —— - y

M h
tk+2
tk ;\ >
:_ /1\ >
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Ensemble Filter for Large Geophysical Models

A generic ensemble filter system like DART just needs:
1. A way to make model forecasts;
2. A way to compute forward operators, h.

y —— - y

M h
tk+2
tk ;\ >
:_ /’(\ >




Ensemble Filters for Aerosols: Strengths

1. Fully multivariate:

All observations impact all state variables,
Tracer obs impact tracer and meteorological state,
Meteorological observations impact tracer state, too.

2. Tracers are modeled and assimilated ‘on-line’.

3. Complex forward operators (e.g. radiances) can
be used.
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Ensemble Filters for Aerosols: Challenges

1. Forecast model must generate covariances:
Requires a good parameterized source model,
Vertical distributions of tracer must be accurate.

2. Maintaining sufficient variability (spread).

3. Dealing with highly uncertain distributions.

4. Systematic errors in remote sensing observations.
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DART is:

Public domain software for Data used at -
Assimilation [ CPNATITAANCL S U
— Well-tested, portable, P N GMIVERSTTY
extensible, free! CIRES oF UTAH
Models

— Toy to HUGE uu N 4 _/_ y
Observations = -
— Real, synthetic, novel

An extensive Tutorial
— With examples, exercises,

explanations p
People: The DAReS Team J L

Jet Propulsion Laboratory
California Institute of Technology
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Basic Capability: Ensemble Analyses and
Forecasts in Large Geophysical Models

S ——%" "\ 6-hour forecast
2 ore0 SO 2600 hPa height
/487 14 Jan 2007

members
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Hurricane Katrina Sensitivity Analysis

Contours: ensemble mean 48h Color indicates change in
forecast of deep-layer mean wind. the longitude of Katrina.
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It's Easy to Add New Models (Tracers) to DART

Uses set of well-defined interfaces.
Adding a large global model takes person weeks.

Adding tracer to large model can be ftrivial.

Can add new tracer to CAM (global atmosphere
model) at runtime.

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH




Major DART compliant models

CAM spectral and FV, CAM/CHEM, WACCM
WRF, WRF/CHEM, WRF/MARS

GFDL AM2

CMAQ (EPA dispersion model)

POP ocean GCM

MIT ocean GCM

COAMPS

NOGAPS

ROSE (upper atmosphere model)
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It's Easy to Add New Observations, too.

Requires only forward operator, h:
maps state to expected observation.
No linear tangents or adjoints.
Limited amount of additional coding in well-defined
framework.

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH




DART Observation Types include:

1.T, winds, moisture from radiosondes, ACARS.
. Satellite drift winds.

. Doppler radar velocity, reflectivity.

. GPS radio occultation refractivity.

. Ground-based GPS.

. Scatterometer winds.

. Retrievals from orbiting radiometers.

. Development underway for radiances.

ONO OB~ WN

Aerosol observations easy to implement, challenging
to use...
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Occulting GPS
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GPS Radio Occultation (RO)

Basic measurement principle:

Deduce atmospheric water vapor and temperature
based on measurement of GPS signal phase delay.

lonosphere

Neutral atmosphere

Earth




Typhoon Shanshan (Sept 10-17, 2006)

700- )
60" A
N "'EEHE?U"E e 160°E

] -- e

Operational forecasts

A .using variational
e =L - « assimilation failed to
101%9;’09 0911 ) 0913 0 EUQHE 0917 0919 predICt the CurVIng Of
1:2.‘"\ Central = the typhoon.

980 SLP ﬂiﬁﬂ’.

" | pressug

960 Q .'I

950 Mﬂﬂc—m' -j

940 /
@
930 .k’-’
920 083

a10

A




Ensemble Forecasts of Minimum Sea Level Pressure
NoGPS GPS

2-day Forecasts of Central SLP from 00UTC 14 Sept, ctl 2-day Forecasts of Central SLP from 00UTC 14 Sept, ref
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Intensity of the typhoon is significantly increased with RO data.
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Forecast Probability of Rainfall >60mm/24h, 12Z 14-15 Sept.
NoGPS GPS

Probability forecast of rainfall (>60mm/24h), 12Z 14-15 Sept, Probability forecast of rainfall (>60mm/24h), 12Z 14-15 Sept, ref
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Rainfall probability is increased with RO data.
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Code to implement all of the algorithms
discussed are freely available from:

Data

Assimilation

Research
Testbed

http://www.image.ucar.edu/DAReS/DART/
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