# UPDATE ON THE NASA GEOS-5 AEROSOL FORECASTING SYSTEM



Peter Colarco<sup>1</sup>, Arlindo da Silva<sup>2</sup>, Anton Darmenov<sup>2</sup>, Virginie Buchard<sup>2</sup>, Cynthia Randles<sup>1</sup>, Ed Nowottnick<sup>3</sup>, Ravi Govindaraju<sup>2</sup>

> <sup>1</sup>NASA GSFC, Atmospheric Chemistry and Dynamics Branch <sup>2</sup>NASA GSFC, Global Modeling and Assimilation Office <sup>3</sup>University of Maryland, Atmospheric and Oceanic Sciences

# GEOS-5 Structure



NASA GMAO is the model custodian NASA ACDB collaborates with GOCART, GMI components NASA ACDB/CU/NCAR collaborates with CARMA components NOAA collaborates with ADAS

### Aerosol Component



- I. Improved NRT biomass burning emissions
- 2. Model evaluation
- 3. Aerosol assimilation
- 4. Satellite simulator

#### I. Improved NRT biomass burning emissions

- 2. Model evaluation
- 3. Aerosol assimilation
- 4. Satellite simulator

# Quick Fire Emission Dataset (QFED)

- NRT estimates of biomass burning based on MODIS products
- Earlier version calibrated against GFEDv2 inventory using fire detections (hot spots) or fire
  radiative power (FRP)
- Newer version uses FRP and determines separate emissions per biome (possibly multiple biomes per grid box):

$$E_{\text{species}}(x,y,t) = \sum_{\text{biome}} C_{\text{biome,species}} \cdot FRP(x,y,t,biome)$$

- Biomes from high resolution (~1 km) data set tropical forest, extratropical forest, savanna, grasslands
- Tuning is relative to older GFEDv2 calibrated emissions via suite of model runs, where AOT is decomposed by component and compared to MODIS AOT:

$$\tau_{obs} = \alpha_{BB}\tau_{BB} + \tau_{dust} + \tau_{seasalt} + \tau_{anthro} + \tau_{etc} + \dots$$

where

 $\boldsymbol{\alpha}_{BB}\boldsymbol{\tau}_{BB} = C_{TF}\boldsymbol{\tau}_{TF} + C_{XF}\boldsymbol{\tau}_{XF} + C_{S}\boldsymbol{\tau}_{S} + C_{G}\boldsymbol{\tau}_{G}$ 

- Separate tuning for Aqua and Terra (redundancy)
- Final product is merged sensor 0.25° daily emissions of:

#### BC, OC, SO<sub>2</sub>, CO, CO<sub>2</sub>, PM<sub>2.5</sub>



| Biome            | С   |
|------------------|-----|
| Tropical Forest  | 2.5 |
| ×Tropical Forest | 4.5 |
| Savanna          | 1.8 |
| Grassland        | 1.8 |
| T I I I I OFFOI  |     |

Tuning relative to QFED I

# QFED Tuning





- QFEDv1 (and predecessor GFED) emissions led to anemic biomass burning AOT in model
- Simulations w/ and w/out specific biome biomass burning emissions used to tune QFED2
- Results are looked at systematically over ~ 40 regions
- Approach has greatly improved fidelity in regions where biomass burning is dominant over dust

I. Improved NRT biomass burning emissions

#### 2. Model evaluation

- 3. Aerosol assimilation
- 4. Satellite simulator

# SO2 Comparisons to Aircraft





Aircraft data from the URF Cessna 402B provided by Jeff Stehr et al. (UMCP)

# Evolution of Saharan Dust Event



Ed Nowottnick, submitted to ACPD

# Impact of Model Resolution



Date

I. Global Dust Emissions



- Computational costs dictate that most model tuning is done at coarse spatial resolution
- Operational systems run at higher spatial resolution

### Baseline Replay Simulation



#### Model has

- High bias in African dust
- High bias in Southern Ocean
- High bias in autumn NH AOT; somewhat low bias in spring
- Low bias in Asian anthropogenic

- Global  $0.5^{\circ} \times 0.625^{\circ}$  replay from MERRA analyses
- QFED2 biomass burning emissions
- EDGAR4.1 SO<sub>2</sub> anthropogenic emissions
- Other inventory emissions from AeroCom

I. Improved NRT biomass burning emissions

2. Model evaluation

#### 3. Aerosol assimilation

4. Satellite simulator

# GEOS-5 Structure



# Quality Control MODIS AOT

- MODIS AOT product has errors and biases
- A new AOT is developed by training a neural net based retrieval (NNR)
- Predictors are (at MODIS L2 retrieval points):
  - MODISTOA radiances
  - Viewing geometry
  - Glint angle (ocean)
  - Cloud fraction
  - Wind speed (ocean)
  - Surface albedo (land, climatological)
- Target is historical co-located AERONET record of AOT (log-transformed to normalize statistics)
- Product is 8 x day, 0.25° 550 nm AOT (Aqua/Terra, Land/Ocean)

**Right:** Joint PDF comparison of original MODIS AOT to co-located AERONET (top) and result of NNR (bottom). Results for MODIS Terra over ocean; similar comparisons made for other.



# Comparison of NNR to MYD04



# Assimilation Methodology

- GEOS-5 Aerosol Assimilation System (GAAS) assimilates AOT from MODIS (land/ocean,Terra/Aqua)
  - Other sensors (e.g., MISR for hindcast) in development
- Simultaneous estimates of background bias (Dee and da Silva, 1998)
- Adaptive statistical quality (Dee et al., 1999)
  - State dependent, adapts to error of the day
  - Background and buddy check based on logtransformed AOD
- Error covariance models (Dee and da Silva, 1999)
  - Innovation based
  - Maximum likelihood
- Lagrangian displacement ensemble technique captures, e.g., plume misplacements



### GEOS-5 Comparisons to MODIS Baseline Assimilation

### June 2008 MODIS Aqua

#### GEOS-5

MODIS -Model





## GEOS-5 Comparisons to AERONET

Bonanza Creek, AK

Capo Verde, Sal Island

La Parguera, Puerto Rico



#### AERONET Baseline Assimilation

- I. Improved NRT biomass burning emissions
- 2. Model evaluation
- 3. Aerosol assimilation

### 4. Satellite simulator

# VLIDORT Simulations

- GEOS-5 simulates aerosol mass
- Optical properties ( $\tau$ ,  $\varpi$ <sub>0</sub>, P( $\Theta$ )) from pre-computed size/composition/humidity dependent LUT
- VLIDORT vector radiative transfer code (Rob Spurr) takes input profile of model optical properties at OMI locations/view geometry
- Spectral TOA radiances computed for direct comparison to OMI
  - Surface albedo (Lambertian) from TOMS UV climatology
  - No clouds in calculation (for now)
  - Aerosol Index (AI) computed from 354 nm and 388 nm radiances



# OMIAI and AAOD Comparisons

Aerosol Index







# Future Directions

- Completion of high resolution baseline run through 2010
- Evaluation of baseline run
- Replay with assimilation of aerosols; evaluation
- GMAO: Plan is to run assimilation operationally June 1
- How does this contribute to ICAP?