# Ensemble assimilation for aerosol

Nick Schutgens Terry Nakajima U. Tokyo

#### ntroduction

• What are our goals ?

– More reanalysis than forecast

- What is our approach ?
  - Model

I

- Observations
- Assimilation
- Does it work ?
- Model parameter estimation

#### G

#### )

S

Greenhouse gases Observing satellite

- Greenhouse gases Observing satellite
  - FTS for  $CO_2$
  - CAI for clouds and aerosol
- CO<sub>2</sub> retrievals require aerosol information
- FTS has strong CO<sub>2</sub> signal where CAI has a weak aerosol signal
  - Ocean glint
  - Bright land surface
- Retrieve aerosol elsewhere and fill in the "gaps" with assimilation
- Over land: use 380nm channel
- Not yet operational







## G C O M

#### Global Change Observation Mission – Carbon cycle

- Global Change Observation Mission Carbon cycle
  - Multi-angle & polarimetric channels will allow retrieval of
    - AOT & AE (algorithm by S. Fukuda)
    - Particle size
    - SSA (for high AOT, algorithm by I. Sano)
  - Aerosol direct radiative forcings





#### S A Air-quality forecasts for Tokyo

- Seamless chemical AssimiLation System and its application for Atmospheric environmental materials
- Air-quality forecasts for the Greater Tokyo Metropolitan Area
  - Aerosol & O<sub>3</sub> (T. Dai)
  - CO<sub>2</sub> (Y. Niwa)
- Regional version of nonhydrostatic global NICAM model (3.5 km) with aerosol module
- Initialized by assimilation of SPM measurements (~ PM<sub>7</sub>)





#### Global aerosol model SPRINTARS

Spectral Radiation-Transport model for Aerosol (Takemura et al., 2000, 2002, 2005, 2009)



- Wind speeds, temperature, specific humidity
- NCEP or GPV-JMA
- T42/20 levels, (T106/20 or 56 levels)
- Flux-form semi-Lagrangian
- Arakawa-Schubert cumulus convection
- Direct aerosol effect on radiative balance
- 1<sup>st</sup> and 2<sup>nd</sup> indirect aerosol effects on clouds

- Sea salt: w<sub>10</sub> (Ericksson or Monahan)
- Mineral dust: w<sub>10</sub>, vegetation, soil moisture, snow cover, LAI
- Sulfate: fossil fuel, biomass burning, volcanoes
- DMS: plankton, vegetation
- Carbons: fossil fuel, biomass burning, agricultural activities, plant emissions
- Chemistry: sulfur oxidation, (SOA chemistry, nitrate thermal eq.)
- Removal through wet & dry deposition, gravitational settling

## Ensemble assimilation











#### LETKF for aerosol

F

• Create an ensemble of perturbed emissions for aggregate aerosol

**e** 

• Initialize ensemble: month-long simulation, with perturbed emission inventories

**e** 

• Usual ensemble size: 24 – 32

S

- Start sequence of assimilation and simulation; do not change perturbed emissions but analyze atmospheric mixing ratios
- Local Ensemble Transfrom Kalman filter (Hunt et al 2007, Miyoshi & Yamane 2007)
- Assimilation window: 1 day ("4D-LETKF without temporal localization", "no-cost smoother")
- Localization: adjust observational errors based on spatial separation
- Observation operator uses ensemble-averaged scattering properties
- Analyzed variable: aggregated aerosol mixing ratios (e.g. fine & coarse)
- Inflation: not very important. Emission ensemble introduces variation.

#### Sensitivity experiments

With the ensemble Kalman filter

| Parameter               | Range                             | Importance | Optimal Comments |                        |
|-------------------------|-----------------------------------|------------|------------------|------------------------|
| Ensemble size           | 10 - 40                           |            | 20               |                        |
| Local patch size        | 2 - 6                             |            | 4                |                        |
| Inflation factor        | 1.0 - 1.3                         |            | 1.03             |                        |
| Emission length-scale   | 1 - 128                           |            | 128              | ensemble spread        |
| Observation type        | AOT / AOT & AE / 2 AOT            |            | AOT & AE         |                        |
| Analyzed variable       | 2 or 3 modes                      |            | 2 modes          | fine: carbon & sulfate |
| Ensemble spinup         | yes or no                         |            | yes              | ensemble spread        |
|                         |                                   |            |                  |                        |
| MODIS aggr. pixel size  | 0.25º - 1.0º                      |            | 0.5°             |                        |
| Smoother time window    | 12 <sup>h</sup> - 48 <sup>h</sup> |            | 24 <sup>h</sup>  |                        |
| Observation time window | 2 <sup>h</sup> - 3 <sup>h</sup>   |            | 3 <sup>h</sup>   |                        |
| Observational error     | normal or halved                  | ?          |                  |                        |
| Seasalt parametrisation | Ericksson or Monahan              |            | Monahan          |                        |
|                         |                                   |            |                  |                        |

#### M E R I Of ensemble Kalman filter/smoother technique

The next 5-10 yr will show whether EnKF becomes the operational approach of choice, or 4DVAR [..] remains the preferred advanced data assimilation method. *Kalnay et al., Tellus 2007* 

- Advantages of ensemble Kalman assimilation:
  - Simple to design and maintain (uncertain aerosol parametrisations!)
  - Flow-dependent model covariant
  - Generates optimal analysis ensemble (forecast plume)
- Disadvantages of ensemble Kalman assimilation:
  - High CPU costs (yet competitive with 4DVAR)

#### Ensemble spread



The estimated error in AOT (ensemble spread) evolves naturally, i.e. according to the physics of the model and the information content of the observations.



## O b s e r v a ti o n s

Currently used datasets

| Dataset | Location      | Observables    | Treatment      |                | n/day |
|---------|---------------|----------------|----------------|----------------|-------|
| AERONET | Global, land  | AOT, AE, (SSA) | As is (!)      | 3 <sup>h</sup> | ~400  |
| SKYNET  | SE Asia       | AOT, AE        | As is          | 3 <sup>h</sup> | ~20   |
| CSHNET  | China         | AOT, AE        | As is          | 3 <sup>h</sup> | ~30   |
| MODIS   | Global, ocean | AOT, (AE)      | Debiased       | 0.5°           | ~5000 |
| ADNET   | SE Asia       | Att. β         | Cloud-screened | 3 <sup>h</sup> |       |
| CALIOP  | Global        | Att. β         | As is (!)      | 3 <sup>h</sup> |       |
| (MISR   | Global, land  | AOT            | ?              | ?              | ?)    |

Care is taken to use only observations with uncorrelated errors:

- AOT and AE instead of multiple AOT
- Attenuated backscatter profiles instead of retrieved extinction profiles

## MODIS errors

Over ocean



- Coastal AERONET sites
- **2003 2009**
- Both Terra & Aqua
- Independent observations
- Innovative error correction
- Collaboration with
  - M. Nakata from Kinki U.

New AOT =  $a_0 + a_1 AOT + a_2 AE + a_3 CLOUD-FRACTION + a_4 WINDSPEED$ 

#### MODIS errors

Random error characterization



Assimilation of AERONET AOT & AE

Validation of the Kalman filter through independent AERONET data



Assimilation of AERONET AOT & AE

Validation of the Kalman filter through independent MODIS Aqua data







Assimilation of MODIS AOT and AERONET AOT & AE



After assimilation, RMS errors are comparable to MODIS observational errors.

Assimilation of MODIS AOT and AERONET AOT & AE

Although we assimilate column-integrated properties (MODIS Terra AOT, AERONET AOT & AE), the ensemble approach leads to redistributed profiles.



Assimilation of MODIS AOT and AERONET AOT & AE

MODIS over land observations sometimes has a negative impact on the consistency of the AOT after assimilation and AERONET AOT

- due to regional biases in MODIS AOT ?
- due to regional correlations in MODIS AOT error ?



Assimilation of CALIOP attenuated backscatter at 532nm

First experiments show strong impact on dust storms in free troposhere. Boundary layer is seldom sampled. Validation in progress (E. Oikawa)



#### Kalman smoother results

Assimilation of MODIS AOT over ocean and AERONET AOT & AE



#### Kalman smoother results

Assimilation of MODIS AOT and AERONET AOT & AE



## u m m a r y

- Implemented and tested ensemble Kalman filter and smoother
  - Analyse mixing ratios or model parameters
- Support for OSSEs
- Support for various observations
  - MODIS

S

- AERONET, SKYNET, CSHNET
- CALIOP

Observations during January 18 -22, 2009









# Assimilated