

METHODS OF NAAPS EVALUATION

Randall S. Johnson¹ Jianglong Zhang¹ Jeffrey S. Reid² James R. Campbell² Edward J. Hyer² Douglas L. Westphal² Nancy Baker² Peng Xian²

¹University of North Dakota, ND ²Naval Research Laboratory, Marine Meteorology Division

ICAP, 12 May 2011

Background

Navy Aerosol Analysis and Prediction System - NAAPS

- Global Aerosol Mass Transport Model
- 1° x 1°
- Produces Forecasts of:
 - Smoke
 - Dust
 - Sulfate
 - Sea Salt
 - ➢ SO₂
- Uses output from NOGAPS
 U.S. Navy Operational Global Analysis and Prediction System
- Assimilation of Satellite and LIDAR
 > NAVDAS-AOD

NAAPS Total Optical Depth from the NRL Marine Meteorology Division Website

Goals and Outline

- Create a convenient method for assessing model performance
- Accomplish by comparing model forecasts with analyses (OWN analysis)
 - Analysis versus previous forecasts at same valid time
 - Can use single model (herein) or multi-model analyses
 - Data assimilation in analysis is imperative for comparing with forecasts
- Evaluation of NAAPS with AERONET
- Effect of LIDAR data assimilation

NAAPS OWN Analysis Code

- Code in IDL and Perl, will change to Python for convenience
- Calculate absolute differences between NAAPS analysis and forecast files at each model grid point
- Mean Absolute Error:
 - Sum all of the absolute differences in corresponding forecast groups
 - Divide by total number of differences in each forecast group
- Root Mean Square Error:
 - Sum the square of all of the absolute differences in corresponding forecast groups
 - Divide by the total number of differences in each forecast group
 - Take the square root

NAAPS OWN Analysis Code

- Forecast Group:
 - 6 hour forecasts Analyses
 - 12 hour forecasts Analyses ... etc.

070100	070106	070112	070118	070200	070206	070212	070218	070300
A_1	F6_1	F12_1	F18_1	F24_1	F30_1	F36_1	F42_1	F48_1
	A_2	F6_2	F12_2	F18_2	F24_2	F30_2	F36_2	F42_2
		A_3	F6_3	F12_3	F18_3	F24_3	F30_3	F36_3
			A_4	F6_4	F12_4	F18_4	F24_4	F30_4
				A_5	6_5	F12_5	F18_5	F24_5

NAAPS OWN Analysis Code

- Other features of OWN analysis
 - Choose any range of dates to analyze
 - Specify range of AOD values to be included
 - Options for: Over Land only, Over Ocean only, and Over Land and Ocean
- First Step: Use AERONET data to compare with NAAPS
 - Test comparison method concept
 - Expect increase in mean absolute error with increasing forecast time (48 hour forecast error > 6 hour forecast error)

- Assume AERONET AOD is truth
- Method of comparison similar to OWN analysis
 - Calculate absolute differences between NAAPS and appropriate AERONET data
 - AERONET observation must be within ± 30 minutes of NAAPS valid time

01 June 2007 00z through 31 July 2007 18z

- Global mean absolute error should increase with each forecast
- 18 and 12 hour forecast error nearly the same

- Determine cause of 18 and 42 hour forecast plateaus of mean absolute error before continuing with the OWN analysis
 - Plateau phenomenon appears to be a cycle of 24 hours (affected the 18 hour and 42 hour forecasts)
 - AERONET sites used for NAAPS model evaluation
 - AERONET data availability: Day time only
 - 24 hour cycle
 - Satellite data are assimilated into NAAPS
 - Satellite data availability: Day time only
 - 24 hour cycle

- Investigation into role the of AERONET and satellite observations is warranted
- Sample MODIS satellite observations from 01 July 2007:

Analysis	6 Hour Forecast	12 Hour Forecast	18 Hour Forecast
00z AERONET 00z Satellite Obs	06z AERONET 00z Satellite Obs	12z AERONET 00z Satellite Obs	18z AERONET 00z Satellite Obs
Analysis	6 Hour Forecast	12 Hour Forecast	18 Hour Forecast
06z AERONET 06z Satellite Obs	12z AERONET 06z Satellite Obs	18z AERONET 06z Satellite Obs	00z AERONET 06z Satellite Obs
Analysis	6 Hour Forecast	12 Hour Forecast	18 Hour Forecast
12z AERONET 12z Satellite Obs	18z AERONET 12z Satellite Obs	00z AERONET 12z Satellite Obs	06z AERONET 12z Satellite Obs
Analysis	6 Hour Forecast	12 Hour Forecast	18 Hour Forecast
18z AERONET 18z Satellite Obs	00z AERONET 18z Satellite Obs	06z AERONET 18z Satellite Obs	12z AERONET 18z Satellite Obs

- View by Column: 1st Column
- Analyses
- Black Dots: AERONET stations used for model evaluation.
- Red Specks: Location of most recently assimilated satellite data.

AOD stations OOz Satellite Observations OOz

Top Row: 1

AOD stations 06z Satellite Observations 06z

Row: 2

AOD stations 12z Satellite Observations 12z

Row: 3

AOD stations 18z Satellite Observations 18z

Bottom Row: 4

- View by Column: 2nd Column
- 6 Hour Forecasts
- Black Dots: AERONET stations used for model evaluation.
- Red Specks: Location of most recently assimilated satellite data.

AOD stations 06z Satellite Observations 00z

Top Row: 1

AOD stations 12z Satellite Observations 06z

Row: 2

AOD stations 18z Satellite Observations 12z

Row: 3

AOD stations OOz Satellite Observations 18z

Bottom Row: 4

- View by Column 3rd Column
- 12 Hour Forecasts
- Black Dots: AERONET stations used for model evaluation.
- Red Specks: Location of most recently assimilated satellite data.

AOD stations 12z Satellite Observations 00z

Top Row: 1

AOD stations 18z Satellite Observations 06z

Row: 2

AOD stations OOz Satellite Observations 12z

Row: 3

AOD stations O6z Satellite Observations 18z

Bottom Row: 4

- View by Column: 4th Column
- 18 Hour Forecasts
- Black Dots: AERONET stations used for model evaluation.
- Red Specks: Location of most recently assimilated satellite data.

AOD stations 18z Satellite Observations 00z

Top Row: 1

AOD stations OOz Satellite Observations O6z

Row: 2

AOD stations O6z Satellite Observations 12z

Row: 3

AOD stations 12z Satellite Observations 18z

Bottom Row: 4

 Method of evaluating NAAPS is the cause of the mean absolute error plateau at the 18 hour forecast

- Now we understand the NAAPS AERONET comparison results
- Continue with the OWN analysis
- Mean absolute error obtained with OWN analysis is relative to the error in the analysis
 - This is why data assimilation is imperative for the OWN analysis

Comparison of NAAPS analyses with AERONET from 01 June 2007 00z to 31 July 2007 18z

- Case: 1 June 2007 00z to 31 July 2007 18z
- Mean absolute error increases, as expected
- Can also examine these results graphically

Mean Absolute Difference in AOD from Analysis 01 June 2007 00z to 31 July 2007 18z

0 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1 2 3 4

Mean Absolute Difference in AOD from Analysis 01 June 2007 00z to 31 July 2007 18z

0 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1 2 3 4

- OWN analysis shows that error increases with each forecast
- Additionally, there is a relatively large amount of error in major source regions

-e.g., Africa and East Asia

 Average analysis increments also reveal the source region problem

Average Analysis Increments

- Average analysis increments reveal relatively large error near major source regions
- The OWN analysis has the benefit of examining the regional growth of error uncertainty

Average Analysis Increments

- Average analysis increments reveal relatively large error near major source regions
- The OWN analysis has the benefit of examining the regional growth of error uncertainty

- Satellite data assimilation limits error in NAAPS analyses
- Vertical distribution of aerosols is not obtained with satellite data
- Errors in analysis lead to forecast errors
- Using LIDAR data can provide distribution profiles
 - e.g., CALIOP
 - Cloud Aerosol-Lldar with Orthogonal Polarization
 - On board the Cloud-Aerosol Lidar and Infrared
 Pathfinder Satellite Observation (CALIPSO) satellite

- First Step: Obtain 0.532 µm attenuated backscatter (km⁻¹ sr⁻¹)
 - CALIOP Level 1B product

Image from: Zhang et al. (2011)

- Second Step: Cloud Screen and Average
 - NASA-generated Level 2 0.333 km CALIOP cloud detection product
 - 1° along-track averages (to fit with NAAPS resolution)

- Third Step: Convert from attenuated backscatter
 to extinction coefficient
 - Use the backward Fernald Solution
 - 2D-Var NAAPS analysis AOT is used to estimate total transmission
 - Approximately mass neutral

Image from: Zhang et al. (2011)

- Fourth Step: Assimilate
- Vertical distribution of AOD is significantly altered

68 50

24 92

60 50

29.73

70.50

15.28

67.50

10.70

- Effect of CALIOP assimilation on NAAPS

 AERONET Comparison
- CALIOP helped improve NAAPS performance

 Next step: perform OWN analysis in regions close to the LIDAR path

Image from: Zhang et al. (2011)

Summary

- Generated OWN analysis method of evaluation
 - Goal: conveniently check model performance
- Tested OWN analysis idea with AERONET data
 - Anomalous behavior in mean absolute error of AOD
 - Error plateaus: 12-18 hour and 36-42 hour forecasts
 - Caused by selective evaluation: the locations of the AERONET stations relative to the locations of the most recently assimilated satellite data
- OWN analysis for 01 June 00z to 31 July 18z 2007
 - Increase in mean absolute error with forecasts
 - Relatively large error in major source regions of aerosols

Summary

- Data assimilation limits error in analyses
- Satellite data assimilation
 - No information about the vertical distribution of aerosols
 - Lack of this information leads to more error
- LIDAR data assimilation
 - Does provide vertical distribution information
 - Can help make analyses more accurate
- Next Step: Perform OWN analysis only in regions near the LIDAR path

Selected References

- Campbell, J. R., J. S. Reid, D. L. Westphal, J. Zhang, E. J. Hyer, and E. J. Welton, 2010: CALIOP aerosol subset processing for global aerosol transport model data assimilation. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, **3**, 203-214.
- http://aeronet.gsfc.nasa.gov
- http://www.nrlmry.navy.mil/aerosol/
- Zhang, J., J. R. Campbell, J. S. Reid, D. L. Westphal, N. L. Baker, W. F. Campbell, and E. J. Hyer, 2011: Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model. *Geophys. Res. Lett.*

