Satellite inputs for aerosol data assimilation

Edward Hyer NRL Aerosol & Radiation Group May 19, 2011

NAVDAS-AOD Data Assimilation

Objectives of QA/QC of satellite AOD for data assimilation

- Minimize outliers
- "a few good obs"
- Reduce bias
 - Offsets
 - Slopes
- Quantify residual uncertainty
 - For each ob: as much detail as possible
- Minimize outliers

Details of MODIS-AERONET comparison

This is for over-land, over-ocean work was slightly different

- AERONET L2.0
 - 2005-2008
 - 550nm AOD by quadratic interpolation (O'Neill et al. 2003)
- MOD04 Level 2, c5
 - 550nm Corrected Optical Thickness
 - + LOTS of metadata
- Matched
 - ±30km, ±30minutes
 - 4.1m retrieval pairs

- Metrics
 - Mean Bias
 - 25th & 75th percentile bias
 - Target error:

$$\tau_{MODIS} = \tau_{AERONET} \pm \left(0.05 + \frac{\tau_{AERONET}}{5}\right)$$

- MOD43 Albedo
 - 0.05° nearest neighbor
 - black-sky hemispheric albedo

Aerosol "signal" =

$$\frac{L_{OBS} - L_{EST, CLEARSKY}}{L_{OBS}}$$

- Implications:
 - Aerosol scattering (C+I) retrieved simultaneously with surface reflectance (A)
 - Multiple scattering can be important at higher concentrations

Identify & quantify uncertainties in collection 5 over ocean MODIS AOD

•Wind speed -> whitecap lifting -> brighter surface -> positive bias in satellite AOD

•This will be corrected in MODIS Collection 6

•Cloud is hard to remove 100%: Cloud can occupy any fraction of pixel

•Residual cloud reflectance -> increased radiance -> positive bias in satellite AOD

Results of QC and QA of collection 5 over ocean MODIS AOD

Biases due to lower boundary condition strongly reduced Biases due to cloud contamination and artifacts strongly reduced 20% reduction in absolute errors

Results of QC and QA of collection 5 over ocean MODIS AOD

a) Terra+Aqua MODIS AOD, before QA and QC, Jan 2007

c) Terra+Aqua MODIS AOD, After QA and QC, Jan 2007

b) Aqua MODIS AOD, Jan 2007 [Vaughan et al. 2007]

d) CALIPSO AOD, Jan 2007 [Vaughan et al. 2007]

Figures b and d are from Mark Vaughan and co-authors, CALIPSO Aerosol Backscatter and Extinction Characterization Using the MODIS and OMI Products, *Eos Trans. AGU, 88*(52), Fall Meet. Suppl., Abstract A23A-0882.

Aerosol "signal" =

- Higher surface reflectance:
 - directly reduces this signal by increasing L_{OBS}
 - places greater demands on model (L_{FST})

Signal-to-Noise 1

-50 0 50 MODIS View Angle (Degrees from Nadir)

- •Atmospheric path length affects precision of AOD retrieval
- Implications for comparing MODIS to CALIPSO & CloudSat

•For high AOD, representativeness error cancels this effect

As scattering angle increases:

- shadowing decreases
- scene brightness increases
- signal/noise drops
- Because increase is more in VIS than NIR, correction is necessary
- MODIS c5 correction works well for most scattering angles

Cloudy retrievals are persistently biased vis-à-vis cloud-free retrievals. Silver lining: Cloud-free areas make up 84% of all retrieved AOD and 90% of 'Very Good' AOD. NRL product includes textural filters to reduce residual cloud.

Surface Boundary Condition Issues in over-land MODIS AOD

- Strong systematic bias with surface albedo
- Positive or negative biases for different land areas

Surface Boundary Condition Issues in over-land MODIS AOD

- Albedo correction calculated empirically
- Corrects

 negative bias
 in S. America,
 positive bias
 over arid
 surfaces

Surface Boundary Condition Issues in over-land MODIS AOD

- Correction expands usable area of MODIS AOD
- More to do: AOD still not available everywhere

- Good compliance without albedo correction
- Good compliance with albedo correction
- Not recommended, even with correction
 - SW CONUS
 - Central China

Microphysical bias

- MODIS c5 uses a coarse climatology of aerosol optical properties
- Two problems:
 - Bias over regions
 - Uncaptured variability
- Above: Bias has general regional trends
- Below: High correlation + variable bias = uncaptured variability in aerosol properties
- Result: NRL L3 product has a regional correction applied

Regional slope correction improves global correlation of MODIS AOD vs AERONET from r^2 =0.62-0.65 to r^2 =0.71-0.73

Error Estimation

- Obs. Uncertainty = instrument error + representativeness error
- Representativeness error = SD of AOD within grid cell
- Instrument error:
 - Over ocean: f(AOD, fine mode fraction)
 - Over land: f(AOD, region)
 - Error = MAX("noise floor",linear relation)

BASE

- Below left: Estimated uncertainty for over-land product without corrections
 - QA=Very Good, Cloud =0
- Below right: Error ratio of corrected vs. uncorrected AOD
 - Australia: filtering changes distribution of AOD, increases noise floor error

Detailed Analysis

Detailed Analysis

Detailed Analysis

Which	MODIS AOD				MODIS-AERONET			∛ -/in/+		Regression		
			Mean	>0.2	>1.0	Mean Bias	RMSE	Toler	ance	Slope	r	
RAW	(N=	2168)	0.286	0.30	0.07	-0.000	0.205	25/62/	11	1.013	0.75	
BASE	(N=	1400)	0.309	0.30	0.09	-0.014	0.212	26/65/	7	0.988	0.78	
NEW	(N=	1350)	0.284	0.32	0.08	-0.022	0.149	12/81/	6	0.956	0.82	
CLIM	(N=	1317)	0.279	0.31	0.07	-0.011	0.138	10/82/	7	0.987	0.82	
AERONET A	40D >	0.2										
RAW	(N=	698)	0.749	0.83	0.23	0.069	0.342	13/65/	20	1.007	0.72	
BASE	(N=	520)	0.740	0.79	0.24	0.043	0.337	19/62/	17	0.987	0.77	
NEW	(N=	491)	0.644	0.83	0.22	-0.022	0.238	15/71/13		0.955	0.80	
CLIM	(N=	461)	0.639	0.84	0.21	-0.001	0.225	13/71/	14	0.985	0.81	
	Noise vs TA			VS TM		Est.@	Est.@	Est.@	Est.@	Est.@		
Which	Floor		Diagnostic		Prognostic		0.1	0.2	0.4	0.6	1.0	
RAW	0.0	79	0.00 +	0.27τ	0.03	3 + 0.17τ	0.08	0.08	0.10	0.13	0.20	
BASE	0.0	58	0.00 +	0.27τ	0.03	3 + 0.14τ	0.07	0.07	0.09	0.11	0.17	
NEW	0.05	50	0.04 +	0.13τ	0.02	2 + 0.16τ	0.05	0.05	0.08	0.11	0.17	
CLIM	0.04	47	0.02 +	0.20τ	0.02	2 + 0.16τ	0.05	0.05	0.08	0.11	0.18	
					-	 .	 Included in Supplement to AMT paper 					
_		RAW	/: All QA		Statistics for aggregated L3 product							
	BASE: QA=VG Cloud=0						organized by regions.					

NEW: filtered/corrected

STRONG: restricted albedo

• Data density, data quality, and plots to permit detailed examination of data

Even More: Level 2 Statistics for every AERONET site

- Directly diagnose surface effects
- Separate stats for raw, basic QA, filtered, filtered+corrected
- Can analyze individual events
- AMT Supplement includes only examples: can supply all on request

Products now available on GODAE http://usgodae.org/cgi-bin/datalist.pl?Data Type=ALL&Parameter=ALL&Provider=nrl&meta=Go#nrl modis I3

MODIS L3

- Latency 24 hours lacksquare
- Can retrieve land/ocean, Aqua/Terra separately
- Currently staged 2010-

This is an official U.S. Navy Web site

Approved for Public Release on 01 December 2008 Naval Research Laboratory Marine Meteorology Division Monterey, CA 7 Grace Hopper Avenue, STOP 2 Monterey, CA 93943-5502