

Current status and updates of the aerosol forecast in Japan Meteorological Agency

Taichu Y. Tanaka¹, Tsuyoshi T. Sekiyama¹, Takashi Maki¹, Mizuo Kajino¹, and Kazutaka Yamada²

> ^{1.}Meteorological Research Institute, ²Japan Meteorological Agency

14 May 2012, ICAP workshop@ESA/ESRIN, Frascati

Topics

- Current aerosol (and air quality) forecasting in JMA
- Update of the global aerosol model
- Development of the regional aerosol/air quality model (NHM-Chem)
- Data assimilation
 - OSSE and validations with MET/MODE
 - Inverse analysis of dust emission flux

Current aerosol and air quality forecasting in JMA

Operational aerosol and air quality models in JMA

KOSA (Aeolian Dust) Prediction

http://www.jma.go.jp/en/kosa/

photochemical oxidant information for the whole of Japan (in Japanese)

全般スモッグ気動情報□第1号。 平成○○年○○月○○日□□時□□分□気象庁子報部発表。 - 光化学オキシダントー。 (見出し)。 □関連地方や九州北部地方(山口県を含む)の一部の地域では、今日(○○日)星頃 からグ方にかけて、光化学スモッグの発生しやすい気象状態となるでしょう。。 □九州北部地方(山口県を含む)では、明日(△△日)も光化学スモッグの発生しや すい気象状態となる見込みです。。

(本文) -

□関東地方や九州北部地方(山口県を含む)の一部の地域では、今日(〇〇日)星頃から夕方にかけて、晴れて日陽が多く、風速も平均3メートル程度と弱く、気温は30度くらいまで上がる見込みです。~

□このため、光化学スモッグの発生しやすい気象状態となるでしょう。

□九州北部地方(山口県を含む)では、明日(△△日)も晴れて気湿が上がり、光化 学スモッグの発生しやすい気象状態となる見込みです。

□屋外での活動に十分注意してください。。

KOSA (Aeolian Dust) information

- JMA operates a numerical dust model for the prediction of Kosa.
- The forecast charts up to 3 days ahead (96 hour) with the interval of 6 hours are updated everyday.
- Two kinds of information are provided.
 - Concentration between the surface to the height of 1 km.
 - Total amount from the surface to the top of the atmosphere.

Asian dust event : 21 March 2010

Specifications of operational aerosol model in JMA

Basic equations	Eulerian model coupled with a GCM	
Transport	3D semi-Lagrangian transport	
Vertical diffusion	Mellor-Yamada level-2 closure	
Convective transport	Mass flux by Arakawa-Schbert moist convection scheme	
Grid size	T106 (1.125°)	
Vertical levels	30 levels (surface – 10 hPa): for meteorology 20 levels (surface – 45 hPa): for aerosols	
Initial time and forecast time	96 hours from 12 UTC (once a day)	
Forcing data (nudging)	Global analysis and forecasts of the JMA's operational Global Spectral Model (GSM)	
	Snow depth analysis	
Dust emission	 Size-bin method: 10 size classes (i.e. dust particles diameters: 0.2-20µm) A global soil texture database for the size distribution of parent soils Erodibility factor for vegetation cover, snow cover, land-use type and soil type 	
Dry and wet deposition	Depend on dust particle size	

Update of the global aerosol model

Development of our new global aerosol model

- We are now developing our new global aerosol model MASINGAR mk-2, for both
 - aerosol forecasting and

– climate research.

- The aerosol model is a part of the Earth System Model of Meteorological Research Institute, MRI-ESM1, and coupled using a coupler library Scup.
- New and sophisticated physical processes.
- Aims to be computationally efficient.

Aerosol model MASINGAR mk-2

(Model of Aerosol Species in the Global Atmosphere)

- Five aerosol species are included:
 - Sulfate, black carbon, organic carbon
 - Sea salt, and Mineral dust
 - Particle size distributions are expressed by sectional approach (6-bins from 0.2 to 20 $\,\mu\text{m})$
 - Depending on purposes, volcanic ash, radioactive materials
 - The emission flux of mineral dust, sea-salt, and dimethylsulfide are calculated based on the surface properties calculated by the atmospheric model, MRI-AGCM3.

The MRI Earth System Model

The MRI-ESM1 aims to improve the prediction of global warming.

 The model components are connected using a coupler library called SCUP, which couples each model using Message Passing Interface (MPI).

The Coupler Library, Scup

- Scup (Simple coupler) is a simple and easy-to-use general-purpose coupler for coupling component models.
 - Efficient data exchang by direct communication via Scup library among the processes of the component models.
 - Different coordinates/grids can be used in each component model by supporting 2-dimentional and 3dimentional coordinate/grid transformation among the models.
 - All written in Fortran 95 and therefore easy to be compiled.
 - Flexible configuration of coupling with namelist file.

(Yoshimura and Yukimoto, 2008)

Update of aerosol forecasting model

	Current operational global dust forecast model	Next global aerosol model
Global aerosol model	MASINGAR (Tanaka et al. 2003)	MASINGAR mk-2 (Tanaka et al., manuscript in preparation)
Dust emission	Function of 10m wind speed $F = C u_{10}^2 (u_{10} - u_t)$	Function of surface friction velocity (Shao et al., 1996; Tanaka and Chiba, 2005)
Included aerosol species	Mineral dust	Mineral dust, sulfate, BC, OC, sea salt
Model grid resolution	Horiz. T106 (Approx. 1.125°) Vertical 20 layers	Horoz. TL159 \rightarrow TL319 (0.56°) Vertical 40 or 48 layers
Atmospheric model	MRI/JMA 98 AGCM (Shibata et al., 1998)	MRI-AGCM3 (Yukimoto et al., 2012)
Advection	3-dimensional semi-Lagrangian	+
Convective transport	Arakawa-Schubert	Tiedtke-like scheme
Land surface model	3-layer Simple Biosphere	HAL
Coupling of aerosol model with AGCM	Subroutine call in each time step	Connected using SCUP library (Yoshimura and Yukimoto, 2008)

Quick comparison MASINGAR mk-2

MASINGAR

27 April 2012 00UTC MASINGAR Forecast t+006 VT: UTC Total Aerosols Optical Depth at 550 nm

NAAPS Friday 27 April 2012 00UTC NAAPS Forecast t+006 Friday 27 April 2012 06UTC Valid Time

Total Aerosol Optical Depth at 550nm

27 April 2012 00UTC MASINGAR Forecast t+006 VT: UTC Total Aerosols Optical Deth at 550 nm

180° 180°W 140°W 120°W 102°W 80°W 80°W 40°W 20°W 0° 20°E 40°E 80°E 80°E 130°E 140°E 140°E 180°

0.0

1.2

25

50

50

MACC

4.0

0.4

Plots Generated Friday 4 May 2012 19UTCNRL/Monterey Aerosol Modeling

Plots Generated Friday 4 May 2012 20UTCNRL/Monterey Aerosol Modeling

90 80

70

60 50

40 30

20

5

Fraction of NO37 in AGR category [%]

Development of the regional aerosol/air quality model (NHM-Chem)

M. Kajino, M. Deushi, T. Maki, T. T. Sekiyama, Y. T. Tanaka, N. Oshima T. Aoyagi, A. Hashimoto and M. Mikami

Motivation

• Operational Forecast:

For more detailed forecast in finer resolution, regional chemical transport model (CTM) is desirable.

• Research activity:

It is desirable to include physically and chemically complicated processes, such as aerosol microphysical kinetics and cloud processes, with finer resolution.

• → Development of regional scale CTM.

NHM-Chem: A CTM with JMA NHM

- JMA has a meso-scale model called NHM (Non-Hydrostatic Model) for operational weather forecast and meteorological research.
- Our development plan: Develop a CTM that work with JMA NHM
 NHM-Chem

Satellite IR Image

Simulated accumulated water content by NHM (Saito et al. 2001)

Category approach: List of aerosol tracers

Gas chem. (SAPRC99), NPF (Kuang), SOA (CMAQ-AE5), Aqueous chem. (RADM) 4-7 categories are used for the 3-D simulation (SS, DU, POL) MADMS: 3 moment bulk aerosol dynamics model.

MBHM: a box model simulation using 64bins

Banana curve cannot be resolved using a single modal approach

A category approach for aerosol and cloud microphysics

Aerosols category based on formation mechanisms

• Size distribution of each category characterized as uni-modal LNSD.

Modeling aerosol chemistry, size and mixing type

Data assimilation: OSSE and validations with MET/MODE

T. T. Sekiyama, T. Y. Tanaka, T. Miyoshi (U. Maryland), will be submitted to GMD.

The CALIPSO orbit has an about 1000 km longitudinal interval per day at mid-latitudes.

Lidar view angle: almost zero...

Data density: very sparse horizontally...

But it has vertical profiles.

Satellite Lidar observation (CALIPSO/CALIOP): NASA launched the polarorbit satellite in 2006.

Ground-based lidar network (NIES AD-Net): NIES Japan is operating more than 20 lidar stations in East Asia.

Observation Variables: attenuated backscattering coeff. at 532 nm; a) CALIPSO/CALIOP; b) model without data assimilation; c) model with data assimilation. White squares: aerosol plumes.

Contours and gray shades are **surface dust concentrations**.

(a) Free model-run result without data assimilation.
(b) CALIPSO data assimilation result.

Red and blue circles are weather stations. The Red ones observed aeolian dust on the day. Blue ones did not observe any dust events.

Sekiyama et al., ACP (2010)

What is an OSSE?

- OSSE: Observation System Simulation Experiment
 × Evaluation of data assimilation technique
 × Optimization of observation network
 × Investigation of the impact of new observation data
- ★ OSSE is an experiment in virtual world
 - ★True value and observational error is KNOWN because the model simulations make the virtual world.
 - ★ Because the true value is known, checking of answers can be done
 - (In the real world, we cannot really know the true values or observational errors.)

What is the virtual world of OSSE?

Making simulated observation data

- 1. Run the model freely with slightly different boundary conditions
 - 1) Modify the dust emission scheme
 - 2) Use different emission inventory of SO₂
 - 3) Change the time constant of nudging time constant of atmospheric field.
- Calculate the attenuated backscatter using the observation operator (observation simulator)
 × Required variables: Cloud amount, aerosol concentration, air temperature, pressure, and humidity
- 3. Add observational error (random noise).

Assimilate to the virtual observation

True value (from which virtual observations are made)

Optical depth of mineral dust (31 May 2007)

Limitation of the classical evaluation index

True value (from which virtual observations are made)

Optical depth of mineral dust (31 May 2007)

Application of MODE/MET to the evaluation of the data assimilation

Object-based evaluation (MODE)

- ★ We used the Method for Object-Based Diagnostic Evaluation (MODE) in Meteorological Evaluation Tool (MET).
 - ×Recognize the similar distribution with smoothing and pattern matching
 - **×**Compare the attribute of each clusters
 - ×Quantify the similarities of the clusters
- Source code of MODE is available for WRF
 ×Used for validation of precipitation forecast (NCAR)
- ✗ Question: Is it applicable to the diagnostics of aerosol distribution?

Background and Motivation

• Which forecast is better?

MODE analysis of dust: Before data assimilation

Free-run with different boundary conditions

Optical depth of mineral dust (31 May 2007)

MODE analysis of dust: After data assimilation

True

Data assimilated result with EnKF

Optical depth of mineral dust (31 May 2007)

Evaluation using MODE: Dust

 Averaged centroid distance of dust aerosol AOD in East Asia

Evaluation using MODE: Dust

 Averaged area radio of dust aerosol AOD in East Asia

Evaluation using MODE: Dust

 Averaged intensity ratio of dust aerosol AOD in East Asia

Sensitivity study of the frequency of CALIPSO observation

Total dust emission : 1 satellite

Total dust emission : 4 satellite

• The data assimilation results become better with 4 CALIPSO satellite into different orbit.

Summary of OSSE of CALIPSO/CALIOP

- The EnKF data assimilation system with satellite lidar worked well in a simulated virtual atmosphere.
 - It is possible to conduct data assimilation with the attenuated backscatter.
 - Available without retrieval
 - Data assimilation is possible with sparse in horizontal but dense in vertical and temporal data.
 - Effectiveness of satellite lidar observation
 - satellite-borne lidar can be effective with data assimilation.
 - OSSE experiment will make it possible to evaluate the future satellite-borne lidar (such as JAXA/EarthCARE: 2015).

Inverse analysis of dust emission flux

T. Maki, T. T. Sekiyama, T. Y. Tanaka

Inverse analysis of dust emission flux using EnKF

Sekiyama et al., SOLA (2011)

Inversion analysis of dust emission using Bayesian synthesis

Observation network

Correction of dust emission

• Inversion analysis by Bayesian synthesis method is applied to dust emission in Asia.

More talk on Wednesday.

Comparison of inverse analyses of dust emission

This is the end of the presentation.

Thank you very much!

Grazie mille.

