

Aerosol and cloud related products by ESA's Aeolus mission

<u>Stefano Casadio</u>¹, Anne Grete Straume², Christophe Caspar²

¹IDEAS/SERCO, ²ESA

Anne.Straume@esa.int, Stefano.Casadio@esa.int, Christope.Caspar@esa.int

European Space Agency

- 1. Motivation for ESA's wind lidar mission
- 2. The Aeolus Doppler Wind Lidar Mission
 - a. Aeolus aerosol and cloud monitoring capabilities
 - b. Aeolus vs. Calipso/ATLID
- 3. Cal/Val
- 4. Conclusions

Atmospheric Dynamics Mission - Aeolus It's a Doppler Lidar Wind mission ...

... providing valuable info on aerosols and clouds!

Launch date: spring 2014

Why launch a space-based DWL?

- 1. There is a need for **homogeneous** global direct measurements of wind profiles, in order to improve the analysis of the atmospheric state for NWP and Climate modelling
- 2. Aeolus shall demonstrate the capabilities of space-based HSR Doppler Wind LIDARs (DWLs) for global wind profiling and their potential for operational use

Global Observing System (GOS) wind information

- Radiosonde and pilot soundings left (BUT NH continents dominate)
- Aircraft data (BUT NH densely populated areas dominate)
- Satellite soundings of temperature and humidity from Polar orbiting satellites (BUT indirect measure of large-scale phenomenon wind outside the tropics through geostrophic balance)
- Atmospheric motion vectors (BUT only in the presence of clouds)

ADM-Aeolus orbit characteristics

Why 6pm crossing time?1) Solar panels almost always illuminated (power for the laser)2) Largely reduced thermal stress (stability of environment)

European Space Agency

ICAP 2012, ESRIN, 15 May 2012

Alter the second second

Wind and atmospheric optical properties profile measurements are derived from the Doppler shifted signals that are backscattered by aerosols **and** molecules along the lidar line-of-sight (LOS)

European Space Agency

UV lidar (355 nm, circularly polarized)

Separate molecular and a particle backscatter receivers (High Spectral Resolution)

No polarization measurements

Adjustable vertical sampling of **24** atmospheric layers with thicknesses from 0.25 - 2 km

One <u>observation</u> is made of lidar signals accumulated over 12 sec (i.e. 90 km).

The horizontal <u>measurement</u> granularity within each observation is commendable (3 to 7 km).

Aeolus vs. Calipso/ATLID: some figures Calipso/ATLID: some figures

Parameter	Aeolus/Aladin	ATLID	Calipso/Caliop
Satellite altitude	408 km	409 km	705 km
Orbital inclination	90 deg	97 deg	98 deg
Ascending node	18:00	14:00	13:30
Repeat cycle	109 orb/7d	389 orb/25d [nom] 140 orb/9d [cal]	233 orb/16d
Orbits per day	16	15.6 / 11.6	15
Laser Divergence	12 μ rad / \approx 6 m		100 µrad / \approx 70 m
Telescope Divergence	19 µrad / \approx 9 m	< 30 m	130 μ rad / \approx 90 m
Laser Wavelenth	355 nm	355 nm	532 nm
Laser Pulse Energy	120 mJ	34 mJ	110 mJ
Laser Pulse Length	30 ns	30 ns	20 ns
Repetition Rate	50 Hz	50 Hz	20 Hz
Single Shot Distance	140 m	140 m	380 m

1. Primary (L2b) product:

Horizontally projected LOS wind profiles

- Approximately zonal at dawn/dusk
- 3 km-averaged measurements and ~90 km averaged observations – scene classified
- Random errors (m/s): 1 (PBL), 2 (Trop), 3-5 (Strat)

1. Secondary (L2a) products:

Optical properties profiles:

- $-\beta$, α , **OD**, scattering ratio
- Aerosol typing (backscatter-to-extinction ratio)
- Cloud/aerosol cover/stratification
- Cloud/aerosol top heights
- Cloud/aerosol base height (optically thin)

For each **observation**, ADM provides two signals, one Rayleigh, one Mie, related to the optical parameters of the atmosphere via the equations:

$$S_{Ray}(z) = K_{Ray} \left[C_1 \beta_{mol}(z) + C_2 \beta_{aer}(z) \right] \frac{\Gamma_{mol}^2(z) \Gamma_{aer}^2(z)}{R^2(z)}$$
$$S_{Mie}(z) = K_{Mie} \left[C_3 \beta_{mol}(z) + C_4 \beta_{aer}(z) \right] \frac{\Gamma_{mol}^2(z) \Gamma_{aer}^2(z)}{R^2(z)}$$

where C_1 , C_2 , C_3 , C_4 , K_{ray} and K_{mie} are known calibration constants ($C_1 \sim C_2$; $C_3 \ll C_4$).

In principle, it is possible to determine $\alpha_{aer}(z)$ and $\beta_{aer}(z)$ from the equations above.

In practise, difficulties are encountered due to:

- The lidar cannot distinguish absorption and scattering extinction
- Large thickness of the height bin (vertical inhomogeneity give ambiguous results when solving the lidar equation)
- Dependence on a priori temperature and pressure information
- Only way to discriminate **aerosol** versus **cloud** particles: use β/α

European Space Agency

ICAP 2012, ESRIN, 15 May 2012

(by A. Dabas, MeteoFrance)

ICAP 2012, ESRIN, 15 May 2012

SCA: standard correct algorithm "Normalized Integrated Two-Way Transmission (NITWT)" assuming a uniform particle layer filling of the entire range bin.

ICA: iterative correct algorithm is intended to retrieve both, the location of the layer in the range gate and the local optical depth when accounting for **partial layer filling** of the range bin.

MCA: Mie channel algorithm, uses Mie channel data and climatology when **no valid Rayleigh data are available**

European Space Agency

ICAP 2012, ESRIN, 15 May 2012

ADM-Aeolus Science Report

Aeolus ("measurement") vs. Calipso/ATLID: horizontal resolution

Layer (km)	Aeolus (km)	Calipso (km)	ATLID (km)	
30 - 40	-	5.00	0.28	
20 - 30	3 to 7	1.67	0.28	
8-20	3 to 7	1.00	0.28	
0 - 8	3 to 7	0.33	0.28	
-2 - 0	3 to 7	0.33	0.28	

Retrieval Capabilities for Particles ADM vs. Calipso

Mission	Spatial sampling	Particle layer detection	Optical properties	Scene classification
	Limited vertical	Good.	Good based on HSRL capability to	Limited. Only two
ADM-Aeolus	resolution in range	The Mie channel	derive particle local optical depth	pieces of information
	bins equal to .25, .50,	performs well at	per range bin LOD_p and extinction-	provided by the Lidar
	1 and 2 km.	moderate SNR (>	to-backscatter ratio EBR using the	$(LOD_p \text{ and } EBR)$. No
		10)	Rayleigh and Mie channels	complementary
				instruments.
	Good. Vertical	Good	Limited. Colour ratio using 2	Good . Several pieces of
CALIPSO	sampling at high	SNR > 10	wavelengths and depolarization	information are provided
	resolution provides		ratio are provided. But a priori	by CALIOP, IIR and
	flexibility.		knowledge of <i>EBR</i> is required to	WAC, and other
	Accumulation to		compute LOD_{p} or backscatter or	components of the A-
	improve SNR.		extinction coefficient	Train

LOD = local optical density; EBR = extinction-to-backscatter ratio (1/BER)

WAC = wide angle camera; IIR = infrared imager

European Space Agency

ICAP 2012, ESRIN, 15 May 2012

- *1.* Assessment, characterization of radiometric performance and stability
- 2. Validation of geo-location information
- *3. Recommendations for enhancements of algorithm and observational settings*
- *4. Systematic validation of algorithms from L1A to L1B and L2A and L1B to L2B*
- 5. Validation of stability of instrument calibration

Wind:

Ground based DWL, HSRL, Radars, Sondes (tropospherestratosphere), Airborne DWL, NWP models

Aerosols/Clouds

Airborne-backscatter Lidars, ground-based Lidars (including Raman), sondes

European Space Agency

Campaigns:

- a. 2 ground-based (2006, 2007) and 3 airborne (2007, 2008 and 2009)
- b. So far, on the order of 100 recommendations for the Aeolus mission (instrument and algorithm development and testing)
- c. Phase E1 (commissioning, ESTEC) and phase E2 (operation, ESRIN) campaigns will be defined soon

- 1. The platform was completed in 2009 and in storage; modifications for In-situ Cleaning System required
- 2. The Aeolus ALADIN Lidar subsystems have all been delivered and qualified on subsystem level, but some modifications are required for an In-situ Cleaning System (flow of O₂ at very low pressure)
- 3. The transmitter laser is the most challenging for the qualification
 - *a.* Laser development & qualification status reviewed by external expert team. Recommendations being implemented:
 - Continuous mode operation
 - Harmonic section to be optimized
 - *b. Continuous Mode operation:*
 - Delta Critical Design Review concluded in March '11

- 1. Aeolus wind lidar mission will deliver atmospheric optical properties measurements as secondary products (L2a)
- The Aeolus L2a products will be made available to users off-line (now every 12 hours) but could in the future become available every 4 hours or more often
- 3. Aeolus L1b products will be available to users NRT and could be further processed locally
- 4. Launch scheduled for spring 2014

Thank you for your attention!

European Space Agency

Spare I: range bins adapted to surface elevation variations

Co-location of Mie and Rayleigh channel sampling within an observation is essential European Space Agency

Spare II: scene classification

$$Classification\Big|_{i} = Class_{BER}\Big|_{i} + 2 \times Class_{Rsca}\Big|_{i} + 4 \times Class_{Temperature}\Big|_{i}$$

 $Class_{BER} = 0 \text{ if BER} < 0.1; = 1 \text{ otherwise}$ $Class_{Rsca} = 0 \text{ if Rsca} < 1.5; = 1 \text{ otherwise}$ $Class_{Temperature} = 0 \text{ if T} < 237.15\text{K}; = 2 \text{ if T} > 273.15\text{K}; = 1 \text{ otherwise}$

European Space Agency

Spare III: scene classification

	BER classification		Scattering ratio classification		Temperature classification		Index of
							Classification
#1	0	Small particles	0	No features in this layer, or	0	Ice crystals, Cirrus	0
#2	1	Big particles	0	very few.	0	Clouds	1
#3	0	Small particles	1	Features in this layer	0	Aerosol layers	2
#4	1	Big particles	1		0		3
#5	0	Small particles	0	No features in this layer, or	1	Ice crystals or	4
#6	1	Big particles	0	very few.	1	Water Droplets	5
#7	0	Small particles	1	Features in this layer	1	Mixed phase clouds	6
#8	1	Big particles	1		1	Aerosols layers	7
#9	0	Small particles	0	No features in this layer, or	2	Water droplets, Water	8
#10	1	Big particles	0	very few.	2	clouds	9
#11	0	Small particles	1	Features in this layer	2	Aerosol layers	10
#12	1	Big particles	1		2		11

European Space Agency

•The two FP band-passes FP-A and FP-B have a FWHM = 0.7 pm (or 1.67 GHz) and are separated by 2.3 pm (or 5.47 GHz).

•The free spectral range (FSR) of the Fizeau interferometer is equal to 0.92 pm but only a fraction of it is imaged onto the detector so the useful spectral range is USR = 0.63 pm or 1500 MHz.

•The FWHM of the Fizeau interferometer transfer function is **0.06 pm** or about 143 MHz. Each channel has an equivalent spectral width of 93.75 MHz or 17 m/s.

European Space Agency