Aerosol Particles: The Big Picture

William D. Collins

Berkeley Lab and UC Berkeley Berkeley, California wdcollins@berkeley.edu

Topics

- Aerosol emissions and AOD since 1850
- The Coupled Model Intercomparison Project and simulation of historical aerosol trends
- Ensemble simulations of aerosols since 1850
- Range of aerosol properties across ensemble
- Implications of simulations for CMIP5

Historical Emission of Radiative Species

Lamarque et al, 2010

• Historical aerosol emissions have been developed for climate simulation.

Historical Evolution of AOD

Lamarque et al, 2010

• The emissions produce significant increases in AOD across northern hemisphere.

Recent Trends in Aerosol Emissions

Granier et al, 2011

• Global BC emissions have increased while SO₂ emissions have decreased since 1980.

Recent Trends in SO₂ by Region

• The declining global emissions of SO₂ result from opposing regional trends.

© TemplatesWise.com

The CMIP5 climate simulation protocol

Taylor et al, 2011

- The Coupled Model Intercomparison Protocol (CMIP5) is the basis for AR5.
- It includes a new set of simulations for the historical record: 1850 2005.

The CMIP5 Models

- To address process uncertainties, CMIP5 includes output from >22 different centers.
- Same forcings are used in these models for a uniform ensemble.

Modeling Center	Model	Institution	term of use	
BCC	BCC-CSM1.1	Beijing Climate Center, China Meteorological Administration	unrestricted	
CCCma	CanAM4 CanCM4 CanESM2	Canadian Centre for Climate Modelling and Analysis	unrestricted	
CMCC	CMCC-CM	Centro Euro-Mediterraneo per I Cambiamenti Climatici	non-commercial only	
CNRM-CERFACS	CNRM-CM5	Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique	non-commercial only	
CSIRO-BOM	ACCESS1.0 ACCESS1.3	CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)	non-commercial only	
CSIRO-QCCCE	CSIRO-Mk3.6.0	Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence	non-commercial only	
EC-EARTH	EC-EARTH	EC-EARTH consortium	non-commercial only	
GCESS	BNU-ESM	College of Global Change and Earth System Science, Beijing Normal University	unrestricted	
INM	INM-CM4	Institute for Numerical Mathematics	unrestricted	
IPSL	IPSL-CM5A-LR IPSL-CM5A-MR IPSL-CM5B-LR	Institut Pierre-Simon Laplace	unrestricted	
LASG-CESS	FGOALS-g2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University	unrestricted	
LASG-IAP	FGOALS-gl FGOALS-s2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences	unrestricted	
MIROC	MIROC4h MIROC5 MIROC-ESM MIROC-ESM-CHEM	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	non-commercial only	
монс	HadCM3 HadGEM2-A HadGEM2-CC HadGEM2-ES	Met Office Hadley Centre	unrestricted	
MPI-M	MPI-ESM-LR MPI-ESM-MR MPI-ESM-P	Max Planck Institute for Meteorology (MPI-M)	unrestricted	
MRI	MRI-AGCM3.2H MRI-AGCM3.2S MRI-CGCM3	Meteorological Research Institute	non-commercial only	
NASA GISS	GISS-E2-H GISS-E2-R	NASA Goddard Institute for Space Studies	unrestricted	
NASA GMAO	GEOS-5	NASA Global Modeling and Assimilation Office	unrestricted	
NCAR	CCSM4	National Center for Atmospheric Research	unrestricted	
NCC	NorESM1-M NorESM1-ME	Norwegian Climate Centre	unrestricted	
NCEP	CFSv2-2011	National Centers for Environmental Prediction	unrestricted	
NOAA GEDL	GFDL-CM2.1 GFDL-CM3 GFDL-ESM2G GFDL-ESM2M GFDL-HIRAM-C180 GFDL-HIRAM-C180	Geophysical Fluid Dynamics Laboratory	unrestricted	

Representative Concentration Pathways (RCPs)

Name	Radiative forcing	Concentration(p.p.m.)	Pathway	Model providing RCP [*]	Reference
RCP8.5	>8.5Wm ⁻² in 2100	>1,370 CO ₂ -equiv. in 2100	Rising	MESSAGE	<u>55, 56</u>
RCP6.0	~6Wm ⁻² at stabilization after 2100	~850 CO ₂ -equiv. (at stabilization after 2100)	Stabilization without overshoot	AIM	<u>57, 58</u>
RCP4.5	~4.5Wm ⁻² at stabilization after 2100	~650 CO ₂ -equiv. (at stabilization after 2100)	Stabilization without overshoot	GCAM	48, 59
RCP2.6	Peak at ~3Wm ⁻² before 2100 and then declines	Peak at ~490 CO_2 -equiv. before 2100 and then declines	Peak and decline	IMAGE	<u>60, 61</u>

*MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International Institute for Applied Systems Analysis, Austria; AIM, Asia-Pacific Integrated Model, National Institute for Environmental Studies, Japan; GCAM, Global Change Assessment Model, Pacific Northwest National Laboratory, USA (previously referred to as MiniCAM); IMAGE, Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, The Netherlands.

Moss et al, 2010

- The RCPs include several mitigation scenarios with range of 2100 forcings.
- The RCP emissions are harmonized with the historical emissions.

Radiative Forcing and CO₂ in the RCPs

Moss et al, 2010

- Consistency in GHG+aerosol forcing is a key element of CMIP5 design.
- Roughly 2/3 to 3/4 of warming to 2025 is due to historical emissions.
- We have analyzed ~15 models available now in CMIP5 archives.

Present-Day Aerosol Optical Depth

- AOD for all species has differed since start of simulations in 1850.
- Current AODs vary across ensemble by factor of >4.
- Resulting variation in clear-sky direct forcing is O(5 W/m²).

Comparison of CMIP5 AODs vs GACP

- Compared to earlier global AOD retrievals, modeled AOD trends are ~0.
- Little evidence in simulations for global brightening manifested in AOD.
- This is consistent with recent assimilation-quality MODIS retrievals.

Ensemble AOD for 2000-2005

AOD for Particles < 1 μ m

- Estimates of fine-mode fraction of AOD differ by factor of ~3.
- The differences persist over time span of the simulations.

Ensemble Fine-Mode AOD

© TemplatesWise.com

Fraction of AOD in Fine Mode < 1 μ m

- There are ≥ 2 clusters of aerosol microphysical representations.
- These clusters may contain different fractions of anthropogenic aerosols.
- However, differences are greatest for lowest anthropogenic emissions.

© TemplatesWise.con

Load of SO₄

- Despite supposedly common emissions data, SO₄ loads vary by factor of ~3.
- There are also large variations in the seasonal cycle magnitude.

Ensemble Load of SO₄

Emissions of SO₂

- There are ~33% differences in SO₂ emissions for present day.
- This explains a small fraction of variation in SO₄ loads across ensemble.

Ensemble Emissions of SO₂

Dry Deposition of SO₂

• Most models analyzed to date have similar rates of dry deposition.

Ensemble Dry Deposition of SO₂

© TemplatesWise.com

Wet Deposition of SO₄

- In contrast to dry deposition, wet deposition varies by factor of >10.
- Seasonal cycle in wet deposition generally << cycle in dry deposition.

Ensemble Wet Deposition of SO₄

24 © TemplatesWise.com

Characteristic Lifetime of SO₄

- Characteristic lifetime of SO₄ is estimated by t \sim load / (wet + dry sinks).
- Range of t varies by factors of 3 in 1950s to 2 in early 2000s.

Load of Black Carbon

- Most models share similar loads of black carbon aerosols for present day.
- This reflects the more complete specification of species in RCPs and historical BCs.

Ensemble Load of Black Carbon

27

0.44

1.09

Conclusions

- The CMIP5 simulations are broadly consistent with historical emissions.
- In improvement to CMIP3, emissions and AOD are continuous at present day.
- There is considerable diversity in the simulated aerosol properties, including:
- Aerosol optical depth
- Fraction of optical depth in fine mode (< 1 μm)</p>
- Load of sulphate aerosol
- Characteristic lifetime of sulphate aerosol
- Transport of anthropogenic aerosols to polar regions, esp. the Arctic.
- This diversity imply the aerosol forcing in historical simulations is not uniform.
- The differences will carry forward into decadal projections of climate change.