Considerations for Satellite Based Fire Emissions

Edward Hyer, NRL

Outline

- 1. Data Requirements for Fire Observations
- 2. Challenges to quantitative fire emissions estimation from space: what we're up against
- 3. Fire detection vs. scale: do different sensors see the same thing?
- 4. Derivation of a combined cloud-covergeometry correction for MODIS fires
- 5. A few more words about fire diurnal cycles

The Heart of the Process

Emissions

+ Fuels Data

Fire Location Data

Implications of these limitations for smoke emission estimation

- An operational emissions estimation system should:
 - Produce consistent emissions from a variable constellation
 - Correct for known sensor properties affecting fire detection
 - Capture variability in fire behavior at diurnal and sub-diurnal scales

Information Requirements

- Latency of Data
 - Faster is better
 - for GEO, should be within one hour
 - for LEO, less strict
 - requires diurnal interpolation
- Data delivered
 - Fire detections
 - location + timing
 - view conditions
 - Satellite Scan pattern
 - scanned
 - not scanned
 - no detection possible
 - Ancillary

- Resolution Requirements
 - Location of Fires (Spatial Resolution)
 - For atmospheric purposes: ~10km
 - For fuels mapping: ~100m
 - Timing of Fires
 - Hourly or better
 - Intensity of Fires
 - This is a subpixel property
 - Current products provide information, but application poses challenges

How well do current satellites meet these requirements?

3) Temporal Sampling is too slow

- Fire is a highly variable signal
 - 30 minutes is a long time

2) Spatial Information is Too Coarse

- Fire is a highly variable signal
 - 30 minutes is a long time
 - 1500m is a big jump

•Spatial resolution of sensors does not allow 100% attribution of fuels in mixed landscapes

•Systematic bias because fires are not evenly distributed spatially (Hyer and Reid, GRL 2009)

•Random error that disrupts spatial/temporal pattern of emissions

1) Most fires are missed

- "Most fires" does not necessarily mean "most fire activity"
 - In many ecosystems, total emissions are dominated by the largest fires

Implications of these limitations for smoke emission estimation

- 1. Omission errors dominate, so don't discard data
 - Use all available sensors all the time
 - Find a way to use both MODIS and GEO data: MODIS is more sensitive, but GEO provides diurnal information very valuable for modeling plume transport
- 2. Scaling will be necessary: observations cannot 'close the loop' of fire energy
 - FRP gives a physically meaningful number, but scaling is required at multiple steps to get to emissions
- 3. Satellite overpasses are best treated as independent snapshots
 - Spatial scale of obs and speed of changes in fire behavior preclude modeling evolution
- 4. Terra=1030LST is an unacceptable assumption

Variability in Fire vs. Variability in Observations

- Q: Do Terra and Aqua seem the same patterns of fire activity?
- A: Yes, at sufficiently coarse scales
- At temporal scales smaller than the orbital period, variations in MODIS detection reduce correlation
- At finer spatial scales, variations in fire behavior assert themselves

AQ

At scales relevant for forecasting, Forecasting **Terra and Aqua see different fires**

R,Terra-Aqua, all, raw()												
	Ann.	0.78	0.83	0.86	0.90	0.92	0.94					
nime integration (days)	64	0.76	0.81	0.84	0.89	0.91	0.94	0.98				
	32	0.74	0.80	0.83	0.88	0.90	0.93	0.96				
	16	0.71	0.77	0.82	0.87	0.89	0.92	0.93				
	8	0.6 <mark>6</mark>	0.74	0.79	0.86	0.88	0.91	0.92				
	5	0.62	0.71	0.77	0.85	0.87	0.91	0.91				
	3	0.56	0.66	0.7 <mark>4</mark>	<mark>0</mark> .82	0.85	0.89	0.90				
	2	0.52	0.62	0.71	0.81	0.85	0.89	0.90				
	1 0.0	0.40	0.49	0.57	0.66	0.70	0.75	0.84	1.01			
	0.00.25		0.50 Spa	1.00 ce inte	3.00 gration	5.00 (degre	10.00 ees)	Glob.	t.			

What About Fire Radiative Power?

Total FRP is driven by fire counts At fine spatial scales, weighting by FRP reduces correlation R,Terra-Aqua, >0, mFRP()

	Ann.	0.41	0.50	0.58	0.71	0.78	0.97	
Time integration (days)	64		0.42	0.49	0.61	0.71	0.89	0.82
	32		0.37	0.46	0.54	0.58	0.67	0.81
	16	0.27	0.32	0.39	0.45	0.51	0.58	0.80
	8	0.24	0.28	0.33	0.42	0.46	0.53	0.76
	5	0.22	0.26		0.43	0.44	0.51	0.76
	3	0.20	0.23	0.26		0.37	0.46	<mark>0</mark> .70
	2	0.19	0.20	0.22	0.31	0.31		<mark>0</mark> .68
	1	0.17	0.16	0.16	0.16	0.17	0.22	0.48
	0.00.25		0.50 Spa	1.00 Ice inte	3.00 gration	5.00 (degre	10.00 ees)	Glob.

 Mean FRP has signal, but only after extensive averaging

14 April 2011

Hyer ISRSE34 Sydney

11 of 25

A single day's fire activity seen by MODIS-Terra and -Aqua

- Daytime fires only, 2011.09.25 there are fires in all SH continents
- Spatial patterns from Terra and Aqua are very different
- Legend = counts per half-degree grid cell
- What are the reasons for these differences?

The MODIS scan pattern at face value

All MODIS: Daytime+Nighttime Total Views 2011.09.27

The "face value" of MODIS coverage is 4 scans/day from Terra and Aqua
We can see this is broadly accurate in the tropics and subtropics
Near-global coverage is achieved with a wide swath- viewing geometry ranges to +/-65 degrees on each side of nadir

Accounting for geometry effects on MODIS "detection opportunity"

Increased coverage at scan edge

Scan 1 Scan 2

Scan 3

Scan centers have coverage ~1.0

Accounting for geometry effects on **MODIS "detection opportunity"**

- Increased coverage at scan edge
- Scan centers have coverage ~1.0

Accounting for cloud effects on **MODIS "detection opportunity"**

Accounting for cloud effects on MODIS "detection opportunity"

More representative of detection opportunity

What does MODIS detection look like across the scan?

Competing Effects: Pixel Size and Diurnal Position

Can we construct an angular correction for fire counts?

- Aqua correction is fairly symmetrical
 - Terra correction is extreme for the early side of the scan
 - 0945 to 1021 local time is a steep part of diurnal curve
 - We will use this correction to estimate "nadir-equivalent looks," which will be the denominator of our normalized fire detection
- Dashed lines show results from single years 2007-2010
- Shaded areas indicate range of single-year results
- Correction numbers include correction for pixel overlap

Accounting for angular effects on MODIS "detection opportunity"

More representative of detection opportunity

Most area sensed falls short of nadir detection opportunity

- "Nadir-Equivalent looks" becomes our coverage correction metric
 - For FLAMBE2, per half-degree grid cell per 24 hours

MODIS "detection opportunity" and MODIS fire detection

Terra-Aqua differences follow "detection opportunity"

2011.09.28 opportunity

All MODIS: Daytime+Nighttime Cloud-Free Area Sensed, Corrected (as # of Looks) 2011.09.28

2011.09.28 fires

Terra+Aqua MODIS, daytime and nighttime overpasses
 More looks => more fires

2011.09.29 opportunity

All MODIS: Daytime+Nighttime Cloud-Free Area Sensed, Corrected (as # of Looks) 2011.09.29

2011.09.29 fires

- Terra+Aqua MODIS, daytime and nighttime overpasses
- More looks => more fires
- Day-to-day variation is mostly artifact of coverage

2011.09.29 opportunity

All MODIS: Daytime+Nighttime Cloud-Free Area Sensed, Corrected (as # of Looks) 2011.09.29

2011.09.28 opportunity

More looks => more fires

2011.09.29 fires

2011.09.28 fires

Legend = counts per half-degree grid cell
More looks => more fires

2011.09.28 opportunity

2011.09.29 opportunity

All MDDIS: Daytime+Nighttime Cloud-Free Area Sensed, Corrected (as # of Looks) 2011.09.29

2011.09.29 fires

All MODIS: Davtime+Niahttime Fires 2011.09.29

2011.09.28 fires

Testing this correction: lag correlation

- Correction makes lag correlation decay more like GEO
- Variation with orbital period not completely eliminated

30 of 25

14 April 2011

Hyer ISRSE34 Sydney

Testing this correction: 1-day lag correlation

Wrap Part 1: Detection Opportunity and Detection

- Spatial patterns of daily fire detection relate as much to coverage as to fire activity on the ground
- 2. A metric of "nadir-equivalent looks" can be used to correct estimated fire activity, with
 - 1. Angular detection efficiency correction
 - 2. Cloud cover correction
 - 3. MODIS scan overlap correction
- 3. This metric is gridded, but does not require discarding fire location information
- 4. Cloud cover correction involves an assumption about fire-under-cloud
 - For FLAMBE-SEAC4RS, the assumption is "for a given half-degree grid cell where a fire is observed during a 24-hour period, fires in that grid cell during that 24-hour period are assumed to be as active under cloud as under clear sky."

Detection Efficiency of MODIS + GEO: SE Africa

Detection Efficiency of MODIS + GEO: Borneo

Diurnal Cycle Climatology

Diurnal Cycle Climatology

- Limited temperate, no boreal data
- Some DC are vegetationspecific, others are regional
- "generic" and "generic non-forest" created by averaging G2007 cycles

Brazil: Rainforest Brazil; Deforestation Brazil; Cropland Eastern Sahel Western Sahel North Central Africa West Central Africa Éast Central Africa South Africa Indía Southeast Asia Southern Borneo Northern Australia Eastern Australia SE USA Generic-Non-Forest Southern Africa

Climatology vs GEO obs.

Peak hour of burning (UTC): Climatology

Peak hour of burning (UTC): Geostationary

- Geostationary diurnal cycles use all GEO obs in a 5x5 window of 0.5-degree grid cells
- Calculated separately for each GEO sensor
- Assigned according to largest number of looks
- For several dates tested, GEO data was used for >80% of MODIS fires
 - Climatology used mostly in NH

Climatology vs GEO obs.

- Hour of peak burning, GEO-CLIM
- GEO is earlier over SA, NA, E. Africa
- GEO is later over Australia
- For several dates tested, climatology was used for <20% of MODIS fires
 - Mostly in NH

Perspective

- 1. Correction for detection opportunity is just one piece of the puzzle
- 2. A quantitative model of detection opportunity and detection efficiency is necessary for a robust emissions estimate, even from a single sensor
- 3. Multiple sensors must be normalized after detection opportunity correction
- Diurnal cycles of fire are very strong, and affect emissions estimation at several points in the processing chain
- GEO and TRMM diurnal cycles have differences that need to be investigated

Thanks!

- WF_ABBA team at CIMSS
 Chris Schmidt & Elaine Prins
- MODIS Fire Team
 Louis Giglio, SSAI
- FLAMBE team at NRL