MINERAL DUST EMISSION PROCESSES AND THEIR MODELING: RECENT PROGRESSES AND REMAINING CHALLENGES

Béatrice Marticorena

Laboratoire Interuniversitaire des Systèmes Atmosphériques CNRS, UPEC,UPD; IPSL Créteil France

DUST EMISSIONS PROCESSES General picture

(From Y. Shao)

DUST EMISSIONS PROCESSES

- Dust emission results from mechanical processes involved in wind erosion
 - + Wind is the main driver
 - + There is a wind velocity threshold
 - + Saltation is generally a pre-requisit
 - + Dust is released by « sand-blasting »

$$F = \alpha \quad C. \ U_*^3 (U_* - U_*_t) \leftarrow \text{Threshold}$$
Sand-blasting $\int Saltation flux$

DUST EMISSIONS PROCESSES

DUST EMISSIONS PROCESSES : THRESHOLD

A size-dependent erosion threshold

→ The available parametrizations provide similar results and correctly simulate the erosion threshold as a function of soil grain size

DUST EMISSIONS PROCESSES : THRESHOLD

Influence of surface roughness

→ Such parameterizations are OK for arid areas (solid obstacles; low roughness densities) but must be adapted for vegetated surface (arrangement; porosity, flexibility, etc ..) (Mac Kinnon et al., 2004)

(Marticorena and Bergametti, 199

DUST EMISSIONS PROCESSES : THRESHOLD Influence of soil moisture

3 1

12

8

Gravimetric soil moisture (%)

loam (4)b

Fécan et al., (1999)

100

1- When applied to
 natural soils, the influence of the soil grain size
 distribution on the
 threshold is minimized

 u_* (and so u) increases

The soil clay content as a proxy of the amount of dust in the

= A balance between the kinetic energy of saltating grains and the cohesion of fine particles

→ all these models require input parameters that are difficult/impossible to measure

→ Measurements of the size distribution of the emission fluxes could be used as a constrain

Simulated dust size distribution (Alfaro and Gomes, 2001)

Figure 5. Comparison of the (concentration) size distributions of the aerosols released by a smooth FS soil at three different u^* (30, 52, and 90 cm/s) with field measurements in 'background' (crosses) and 'dust storm' (circles) conditions [after d'Almeïda, 1986]

-The proportion of the finest modes increases as wind friction velocity increases because of higher kinetic energy flux

Size-resolved dust emission fluxes (Sow et al., 200

Size-distribution of the dust emission fluxes (Sow et al., 200 (log normal modes; gmd, = geometric mean diameter in µm)

	mode1			mode2				mode3			
		σ	gmd	%	σ	gmd	9	%	σ	gmd	%
	ME1				1,7	4,9	4	42%	1,5	10,4	58
	ME4				1,8	5,1	4	43%	1,5	10,4	57%
	CE4	1,50	1,70	11%	1,7	5,1	7	77%	1,5	10,0	12%
		111	111		***						
/in	d tunnel	1.7	1.5	/////	1.6	6.7			1.5	14.2	(A

The two coarse modes are finer than in the wind tunnel expense

V

Sensitivity of the dust flux (Alfaro and Gomes, 2001) to the soil grain

DUST EMISSIONS PROCESSES : SANDBLASTING Simulation of the size-distribution of emitted dust with a brittle fragmentation theory (Kok, 2011)

Input parameters Propagation length λ = 12±1 µm Soil texture D_s =3.6 µm σ_s =3 C_N =0.9539 C_v =12.62

Dust size distribution = power law

→ Soil properties seems to play a critical role in the sandblasting models ; to be further investigated (wind tunnel; in the field)

→ Soil size distributions is not homogeneously measured (no standard)

 \rightarrow Measured dust size distribution must be enlarged (<0.3 $\mu m;$ >10 $\mu m)$

(KOK et al., 2011

DUST EMISSIONS PROCESSES

 → Dust emission fluxes can be reasonably well predicted if surface parameters (soils properties, surface roughness, vegetation/litter cover), surface winds and soil moisture are correctly measured/estimated

→ Sand blasting models cannot predicted the size distribution of the emitted dust with a good confidence level.

TOO TOW OTHISSION OXPORTION

DUST EMISSIONS PARAMETERIZATIONS

Formally, dust emission parameterizations used in 3-D models are in the form :

 $F \approx C. U^3 (U - U_t)$

× Simplifications : Prescribed preferential sources, erodability index (C = $\sum c_i$), ...

× Input parameters

- Surface properties: aeolian roughness; soil sizedistribution
- Meteorological parameters : Wind velocity ; soil moisture or precipitation

INPUT PARAMETER : SURFACE ROUGHNESS

Mapping from satellite surface products

→ Surface satellite products (BRDF, radar backscatter coefficient) provides very good estimation of the aeolian roughness length and thus of the erosion threshold

→ Today d ifferent maps are available at the global scale (i.e., Prigent et al., submitted to AMT-D; MODIS BRDF, E. Vermote))

(Li

Μ

m

INPUT PARAMETER : SURFACE ROUGHNESS

INPUT PARAMETER : SOIL SIZE DISTRIBUTION

Input for saltation flux computation =

→ Undisturbed size distribution significantly differs from the disturbed one

er

INPUT PARAMETER : SOIL SIZE DISTRIBUTION

→ In East Asia,undisturbed soil size are significantly different from one desert to the other and relatively homogeneous in a given desert

Ulan Buh and Badain Jaran (N=10)		97	1.30	52	316	1.59	48	3.4	8.6	88.2
Tengger and Kubqi (N=9)		120	1.48	72	322	1.29	28	2.6	7.3	90.7
Mu Us (N=8)		99	1.17	35	330	1.37	65	1.6	7.7	90.2
Horqin (N=23)		315	1.29	100		-	1.1-1.1	1.6	7.7	90.2
East of Xinjiang area (N=4)		90	1.24	29	293	1.66	71	9.9	34.7	55.3
Hexi Corridor (N=10)		97	1.26	40	386	1.59	60	4.8	14.8	80.6
Gurban Tunggut (n=3)		94	1.12	36	170	1.69	64	3.6	13.5	82.0
Laurent et al. GPC. 200										

INPUT PARAMETER : SOIL SIZE DISTRIBUTION

80		
	*	MMD : 80 - 100 μm
•		% silt · 0 _ 80 %

→ No unambiguous relationship between soil texture and undisturbed soil size distribution

→ Additional samples/analyses are needed for other deserts to establish links with soil texture (available at global scale)

(Laurent et al., 2006)

INPUT PARAMETER : WIND VELOCITY

Annual mean emissions

DUST SOURCES SIMULATION : VALIDATION ?

 → Difficult to validate simulated dust emissions due to uncertainties on aerosol satellite products over bright surfaces
 → In some regions horizontal visibility from meteorological stations can be used
 (when a sufficient number of stations and data is available)

→ Quantification of the relevance of the dust emissions through results of 3-D regional simulations ?

Dust Emission:

⇒ Dust emissions fluxes (Marticorena and Bergametti, 1995); Surface data base (Marticorena et al., 1997)

 \Rightarrow Associated size-distribution (Alfaro and Gomes, 2001)

 \Rightarrow distributed on 20 log. bins

Domain : 10S-60N, 90W-90E North Atlantic, North Africa, Arabian Peninsula

Model outputs

-Dust 4D fields in µg/m3 for each bin -Optical thickness, deposition fluxes

Simulation domains:

- Horizontally: (1x1 degrees) -Vertical mesh 15 to levels (up to 200hPa)

Meteorological forcing

-ECMWF forecast (Fist guess) + empirical correction of surface winds in the Bodélé Depression

Aerosol Optical Depth @550nm

Refractive Index =1.5 - 0.005i ; (Moulin et al., 2001)

A Chemistry and Transport Model with no chemistry but dust ...

INPUT PARAMETER : WIND VELOCITY

Simulation of the dust content over the Sahel with CHIMERE-Dust

Correction based on measurements in Faya-Largeau 15N-19N and 15E-20E Impact of the correction of surface winds in the Bodele Depression

Hourly measured and simulated aerosol optical depth

→ Most of the dust events are retrieved both in terms of timing and intensity

(Level 2 AODs with α >0.4)

5

(Schmechtig et al., 2011)

Daily measured and simulated surface concentrati

→ The order of magnitude of the surface concentrations is retrieved
 → The seasonal cycle is well reproduced
 → The level of agreement with observations is similar than PM concentration in air quality models (NME = 75%; NMB = -36 %)

Year 2006	Total deposition (µg.m ⁻²)				
	Measured	Simulated			
	00.0				

Annual total deposition fluxes are reasonable but underestimated

→ Underestimation of the dry deposition ?
→ Bias in the size distribution ?
→ Significant bias due to precipitation
spatial and temporal distribution

CONCLUSION (1/3)

- Dust emission fluxes can be reasonably well predicted based on available parameterizations provided surface parameters are correctly estimated
 - + Surface roughness can be mapped based on satellite products
 - + Soil properties must be derived/calibrated from measurements
- Emitted dust size distribution of the emitted dust cannot be modelled today with a good confidence level.
 - + Additional process studies and field measurements are needed
 - + It can be assigned from available field measurements (AMMA: IADE)

SIMPLIFIED DUST EMISSION SCHEME

Structure of the dust emission model Shao et al., 2004

CONCLUSION (2/3)

- Surface wind velocity is the most critical parameter for dust emission simulations
- The capability of meteorological models to provide realistic surface winds must be questioned and evaluated
- Bias in the simulated surface wind must be corrected ; it cannot be compensated by a tuning of the surface properties
- Soil moisture is also important in defining source regions and suffers from even larger uncertainties

CONCLUSION (3/3)

- Satellite aerosol products should be used to constrain the dust events frequency separatly from the dust content (a constrain on the erosion threshold/modelled wind velocity)
- Other uses of satellite products should be investigated (evaluation displacement velocities of dust plumes; gradient of deposition using angstrom coefficients, ...)
- The only way to reduce the uncertainties on the dust emissions is to close the mass budget
 - + **Deposition** networks are needed
 - + Data on dust size distribution from the recent intensive field campaign (large size range) must be compiled to extract trends and patterns to test the 3-Dmodels

DUST SIZE DISTRIBUTION MEASURED IN THE SAHEL

- ✓ Shift between local erosion and local advection (decrease of coarse modes)
- ✓ Coarse mode within the long range transport
- ✓ Local erosion and Long range advection similar within dry (SOP 0) and wet season (SO

Thank you for your attention !