

Project update from JAXA: GCOM-C1/SGLI

GCOM-C1: Global Change Observation Mission – Climate, 1st satellite SGLI: Second-generation GLobal Imager

> Hiroshi Murakami JAXA/EORC ICAP 2013 Tsukuba Working group meeting Nov. 6, 2013

1. GCOM-C Science targets

(1) Radiation budget and Carbon cycle

1. GCOM-C Science targets

(2) GCOM-C Observation Products

Common							
Padiance • TOA radiance (including system							
ladiane	geometric correction)						
 Radiation budget by the atmosphere-surface system Carbon cycle in the Land and Ocean 							
	Land		Atmosphere Ocean		Cryosphere		
Surface	Precise geometric correction		Cloud flag/Classification	Ocean color ECV	 Normalized water leaving radiance 		• Snow and Ice covered area
ce	 Atmospheric corrected reflectance 		 Classified cloud fraction 		Atmospheric correction parameter	Area/	 Okhotsk sea-ice distribution
Vegetati	 Vegetation index 		• Cloud top temp/height		Photosynthetically	on	Snow and ice
	 Above-ground biomass EC 	V Cloud	• Water cloud optical thickness /effective radius		available radiation		classification
	 Vegetation roughness index 	ECV		In-water In-water Temp.	Chlorophyll-a conc.		Snow covered area in forest and mountain
on and carbon	Shadow index		 Ice cloud optical thickness 		Suspended solid conc.		 Snow and ice surface Temperature
cycle	• Fraction of Absorbed Photosynthetically		Water cloud geometrical		organic matter		Snow grain size of shallow layer
	Leaf area index ECV		Aerosol over the ocean		Inherent optical properties	Surface propertie s	Snow grain size of
Temp.	Surface temperature	Aerosol	• Land aerosol by near		• Sea surface temp. ECV		subsurface layer
Applicati on	Land net primary production	ECV	ultra violet • Aerosol by Polarization		Ocean net primary productivity		Snow grain size of top layer
	Water stress trend	Radiation	Long-wave radiation flux	Applicati on	Phytoplankton functional		Snow and ice albedo ECV
	Fire detection index ECV	budget	Short-wave radiation flux		type		Snow impurity
	Land cover type ECV	ECV			Redtide		lce sheet surface roughness
Land surface albedo ECV Blue:		Blue: st	andard products		ocean color	Boundary	Ice sheet boundary
Red: research products				multi sensor merged SST			

2. GCOM-C1/ SGLI

Improvement of the land, coastal, and aerosol observations

✓ 250m spatial resolution with 1150~1400km swath

✓ <u>Polarization/along-track slant view</u>

GCOM-C SGLI	characteristics (Current baseline)			
Orbit	Sun-synchronous (descending local time: 10:30), Altitude: 798km, Inclination: 98.6deg			
Launch Date	JFY 2016 (TBD)			
Mission Life	lission Life 5 years (3 satellites; total 13 years)			
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)			
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)	ngle obs and 86		
Digitalization	12bit	ti-aı nm		
Polarization	3 polarization angles for P	Mul 674		
Along track tilt	Nadir for VN, SW and T, & +/-45 deg for P			
On-board calibration	 VN: Solar diffuser, Internal lamp (LED, halogen), Lunar by pitch maneuvers (~once/month), and dark current by masked pixels and nighttime obs. SW: Solar diffuser, Internal lamp, Lunar, and dark current by deep space window TIR: Black body and dark current by deep space window All: Electric calibration 			

```
SGLI : Second 
generation GLobal
Imager
```

shortwave & thermal InfraRed (T) Scanner (IRS)

- Polarization (along-track slant) radiometer (P)
 - Visible & Near infrared pushbroom Radiometer (VNR)

250m over the Land or coastal area, and 1km over offshore

		SGLI channels					
		λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV
	СН	VN, P, S T: μ	SW: nm սm	VN, Ρ: W/m²/sr/μm T: Kelvin		VN, P, SW: - T: NE∆T	m
	VN1	380	10	60	210	250	250
	VN2	412	10	75	250	400	250
	VN3	443	10	64	400	300	250
	VN4	490	10	53	120	400	250
	VN5	530	20	41	350	250	250
	VN6	565	20	33	90	400	250
	VN7	673.5	20	23	62	400	250
\rightarrow	VN8	673.5	20	25	210	250	250
	VN9	763	12	40	350	1200(@1km)	250
	VN10	868.5	20	8	30	400	250
\rightarrow	VN11	868.5	20	30	300	200	250
∮	POL1	673.5	20	25	250	250	1000
₹	POL2	868.5	20	30	300	250	1000
	SW1	1050	20	57	248	500	1000
	SW2	1380	20	8	103	150	1000
	SW3	1630	200	3	50	57	250
	SW4	2210	50	1.9	20	211	1000
	TIR1	10.8	0.7	300	340	0.2	500/250
	TIR2	12.0	0.7	300	340	0.2 🚽	500/250

250m-mode possibility

Engineering Model (EM) development & test

- Filters manufacturing: Spectral response of filters (uniformity of λc : 0.5-1.0nm in FOV, characterized by 0.1nm)
- CCD (EM) manufacturing: completed; Pre-Flight Model manufacturing has been started
- Stray Light : Telescope test with the CCD; Numerical correction method study with convolution technique
- Calibration : Integrating sphere calibration with national standards

3. Status of GCOM-C1 project

Framework of the atmosphere area activities

Improvement of aerosol and aerosol products through polarization, NUV, and wide-swath observations, and contribution to the estimation of radiative forcing through collaboration with in-situ observations and cloud-aerosol and climate models

(1) GCOM-C1 data processing flow (Atmosphere)

(2) An example of flow of the traditional algorithm

(3) Pre-estimation of surface reflectance

Estimation of near UV~blue (and red) reflectance by simultaneous NIR or SWIR

- ✓ Spatial/temporal change of vegetation spectrum
- ✓ Local soil optical properties..
- Consideration of BRDF

NDVI-412nm relation (MODIS global)

Or prepare static LUT?: e.g., $R(\theta_0, \theta_1, \varphi) = k_0 + k_1 \times F_1(\theta_0, \theta_1, \varphi) + k_2 \times F_2(\theta_0, \theta_1, \varphi)$

- Gap of τ_a on the neighboring path boundary is corrected by the land surface BRDF
- The BRDF effect is small in 412nm-443nm and large in 554-2114nm

(4) Aerosol models (size distribution and absorption)

Imaginary part of the refractive index (m_i)

Cited from *"Report about modeling of the aerosol size distribution"* Makiko Nakata, Itaru Sano, and Sonoyo Mukai, Kinki Univ., 20 May 2011, *in Japanese*

Other parameters:

- Vertical distribution,
- Non-spherical parameter (e.g., x0, G, r)
- Density (to connect model g/m³)

Current discussions:

- How to set the candidate aerosol models
 - Climatology from AERONET and SKYNET
 - Revision by new in-situ measurement results
 - ✓ Local area dependence?
- Consistency between the aerosol transport model and the satellite aerosol algorithms

Influence of the size distribution & refractive index

Following four cases were tested in the East Asia (by MODIS; val by AERONET)

- (1) Large particle m_i^{large} is changed by a half from the Rstar yellow sand model^{*} (baseline)
- (2) mode radius of r_m^{large} :3.42 \rightarrow 4.5 μ m
- (3) mode radius of r_m^{large} :3.42 \rightarrow 2.5µm
- (4) Large particle m_i is set by the Rstar yellow sand model^{*}

(5) Use of SGLI polarization observation

POLDER experience

- Experience of satellite POL data analysis
- POLDER BPDF data base (function of land cover classification and vegetation index) has been provided by Dr. Bréon under JAXA/SGLI and CNES/POLDER/3MI collaboration

Difference of SGLI from POLDER

- 1-km resolution
 - $\checkmark~$ Cloud contamination will be improved than POLDER
 - ✓ 1-km scale land cover and geographical influence should be confirmed (applicability of the POLDER ground BPDF)
 - Combined use of the nadir-slant views for aerosol type estimation (influence of IFOV, registration..)
- Single viewing angle (+45° or -45° along track)
 - ✓ Single scattering angle condition (mostly in 60~120 degrees)
 - ✓ Sunglint over the ocean (and flood land?)

AOT June 2003 using POLDER-2

0.0 0.5 1.0

Global aerosol optical thickness in June 2003 using POLDER-2 polarization reflectance (provided by I. Sano, Kinki Univ.)

5. Validation plan

- 1. Match-up analysis with SKYNET, AERONET and other observation groups
- 2. Uncertainty assessment@pixel is required for model assimilation
 - i. Empirical approach
 - A) Validation @ASRVN, AERONET-OC, in-situ observation champagne (TBD)..
 - B) AERONET comparison in each condition
 - ii. Theoretical analysis
 - A) Error of satellite sensor calibration
 - Calibration from pre-launch to on-orbit, and vicarious adjustment
 - B) Error dependency of the algorithm and observation condition
 - Surface reflectance error relating with its brightness, directionality and variability (vegetation)
 - Locality of the aerosol properties (size and absorption, with humidity?)
 - Error sensitivity on the satellite & solar geometries (scattering angle)
 - Contamination by clouds, shadow, snow, and sunglint

Area	Group	Product	Release threshold	Standard accuracy	Target accuracy
Atmosphere		Cloud flag/Classification	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount
		Classified cloud fraction	20% (on solar irradiance) ^{*8}	15% (on solar irradiance)*8	10%(on solar irradiance) ^{*8}
	Cloud	Cloud top temp/height	1K ^{*9}	3K/2km (top temp/height) ^{*10}	1.5K/1km (temp/height) ^{*10}
		Water cloud OT/effective radius	10%/30% (CloudOT/radius) *11	100% (as cloud liquid water ^{*13})	50% ^{*12} / 20% ^{*13}
		Ice cloud optical thickness	30%*11	70%*13	20%*13
		Aerosol over the ocean	0.1(Monthly τa_670,865) ^{*14}	0.1(scene τa_670,865)* ¹⁴	0.05(scene τa_670,865)
	aerosol	Land aerosol by near ultra violet	0.15(Monthly τa_380) ^{*14}	0.15(scene τa_380) ^{*14}	0.1(scene τa_380)
		Aerosol by Polarization	0.15(Monthlyτa_670,865) ^{*14}	0.15(scene τa_670,865) ^{*14}	0.1(scene τa_670,865)

*8: Comparison with in-situ observation on monthly 0.1-degree

- *9: Vicarious val. on sea surface and comparison with objective analysis data
- *10: Inter comparison with airplane remote sensing on water clouds of middle optical thickness
- *11: Release threshold is defined by vicarious val with other satellite data (e.g., global monthly statistics in the mid-low latitudes)
- *12: Comparison with cloud liquid water by in-situ microwave radiometer
- *13: Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)
- *14: Estimated by experience of aerosol products by GLI and POLDER

6. Summary

- GCOM-C targets
 - Long-term observations of the climate system (the radiation budget and carbon cycle)
- GCOM-C/SGLI characteristics
 - 250-m resolution and 1150-km (1400-km) swath for the land and coast observations
 - Near-UV (380nm) and polarization observation for the land aerosol estimation
 - Two-angle \times two channel observations for the biomass and land cover classification
 - (Multiple calibration functions: solar diffuser, LED, Moon, and vical)
- Schedule
 - Satellite, sensor, ground system, and algorithm are developing for the launch in 2016; Manufacturing of the SGLI Pre-Flight Model is starting
 - GCOM-C PI team has been organized since summer 2009; Currently, the second research period JFY2013-2015 is ongoing
- Science challenges (about the aerosol product)
 - Candidate aerosol models (size distribution and refractive index)
 - Surface BRF modeling (with canopy radiative transfer model by GCOM-C1 land group)
 - Error range estimation and flagging for the model assimilation
- Others
 - L1, 2, and 3 products will be released to the public one year after the launch
 - NRT data flow
 - GCOM products will be free of charge for internet acquisition