National Aeronautics and Space Administration



# The Future of NASA's Aerosol and Cloud Measurements from Satellites

Hal Maring Earth Science Division, Science Mission Directorate

November 2013

# **Atmospheric Composition Research at NASA**



**Carbon Cycle &** Ecosystems (CO<sub>2</sub>, CH<sub>4</sub>)

**Climate Variability** & Change (atmospheric constituent effects on climate)

Research

Missions

Models

Technology



## **Atmospheric Composition**

Water & Energy **Cycle** (atmospheric water vapor)

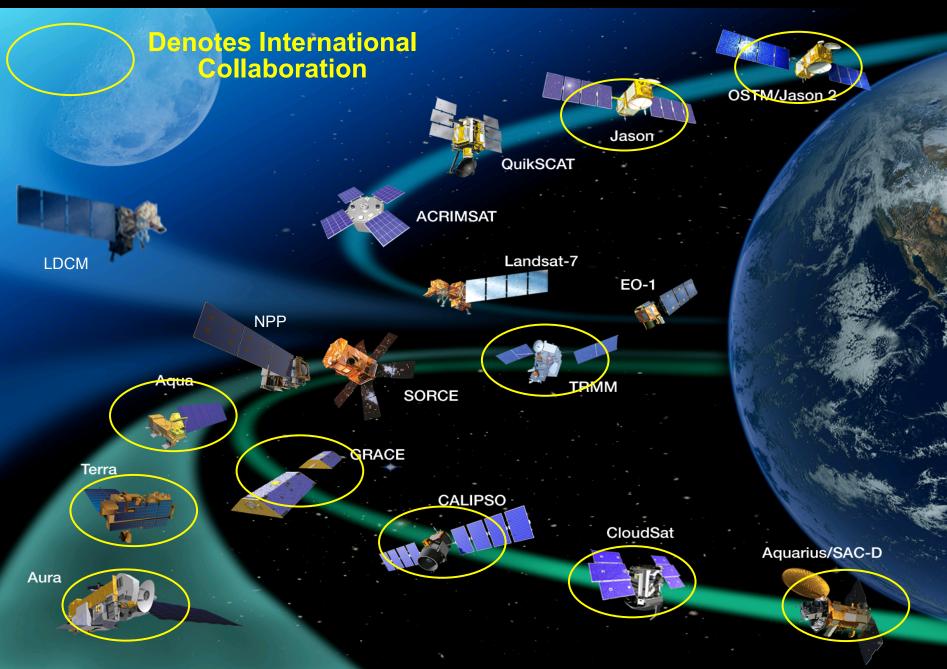
**Earth Surface &** Interior (volcanic effects on atmosphere)

Weather (effects on air quality)



• How is atmospheric composition changing? What chemical &

physical processes are important for air quality, radiative transfer and climate?


 What trends in atmospheric constituents, clouds and cloud properties as well as solar radiation are driving global climate? How do atmospheric

- trace constituents respond to and affect global environmental change?
- How will changes in atmospheric composition affect ozone and regionalglobal climate?



# NASA Operating Missions





# **Operating Satellite Status**



|           |           |                     |                  | Current Life |                 |
|-----------|-----------|---------------------|------------------|--------------|-----------------|
| Mission   | Launch    | Phase               | Design Life (yr) | (yr)         | Expected End    |
|           |           |                     |                  |              |                 |
| Terra     | 18-Dec-99 | Extended            | 5                | 13.3         | 2017            |
| ACRIMSat  | 20-Dec-99 | Extended            | 5                | 13.3         | 2020            |
| Aqua      | 03-May-02 | Extended            | 5                | 11.0         | 2022            |
| SORCE     | 25-Jan-03 | Extended            | 5                | 10.2         | 2015            |
| Aura      | 15-Jul-04 | Extended            | 5                | 8.8          | 2018            |
| Cloudsat  | 28-Apr-06 | Extended            | 3                | 7.0          | 2015            |
| CALIPSO   | 28-Apr-06 | Extended            | 3                | 7.0          | 2016            |
| OCO - 1   | 24-Feb-09 | Launch Failure      | 2                | N/A          | N/A             |
| Glory     | 04-Mar-11 | Launch Failure      | 3                | N/A          | N/A             |
| Suomi-NPP | 25-Oct-11 | Prime till Oct 2016 | 5                | 1.4          | not enough data |

# **Operating Instrument Status**



| INSTRUMENT                                                   | INSTRUMENT | MISSION   | STATUS                                                                    |
|--------------------------------------------------------------|------------|-----------|---------------------------------------------------------------------------|
| Spectral Irradiance Monitor                                  | SIM        | SORCE     | Operating in daylight only                                                |
| Solar-Stellar Irradiance Comparison Experiment               | SOLSTICE   | SORCE     | Operating in daylight only                                                |
| Total Irradiance Monitor                                     | TIM        | SORCE     | Operating in daylight only                                                |
| XUV Photometer System                                        | XPS        | SORCE     | Operating in daylight only                                                |
| Clouds and the Earth's Radiation Energy System               | CERES      | Terra     | Operating nominally                                                       |
| Moderate Resolution Imaging Spectroradiometer                | MODIS      | Terra     | Operating nominally                                                       |
| Multi-Angle Imaging Spectrometer                             | MISR       | Terra     | Operating nominally                                                       |
| Measuerment of Pollution in the Troposphere                  | MOPITT     | Terra     | Operating nominally                                                       |
| Advanced Spaceborne Thermal Emission & Reflection Radiometer | ASTER      | Terra     | SWIR failed (VNIR & TIR operational)                                      |
| High Resolution Dynamics Limb Sounder                        | HIRDLS     | Aura      | Failed                                                                    |
| Ozone Monitoring Instrument                                  | OMI        | Aura      | Row anomaly                                                               |
| Microwave Limb Sounder                                       | MLS        | Aura      | Operating nominally with Band 13 powered off & THz channel in standby; or |
|                                                              |            |           | redundant mirror switching mechanism                                      |
|                                                              |            |           | electronics                                                               |
| Troposphere Emission Spectrometer                            | TES        | Aura      | Interferometer Control System currently working                           |
| Cloud-Aerosol Lidar with orthogonal Polarization             | CALIOP     | CALIPSO   | Operating nominally second laser unit                                     |
| Imaging Infrared Radiometer                                  | lir        | CALIPSO   | Operating nominally                                                       |
| Wide Field Camera                                            | WFC        | CALIPSO   | Operating nominally                                                       |
| Active Cavity Radiometer Irradiance Monitor-III              | ACRIM-III  | ACRIMSAT  |                                                                           |
| Atmospheric Infrared Sounder                                 | AIRS       | Aqua      | Operating nominally                                                       |
| Advanced Microwave Scanning Radiometer for EOS               | AMSR-E     | Aqua      | Operating at 2rpm for cross-calibration with GCOM-W1 AMSR2                |
| Advanced Microwave Sounding Unit-A                           | AMSU-A     | Aqua      | 10 of 15 channels performing well                                         |
| Humidity Sounder-Brazil                                      | HSB        | Aqua      | Failed                                                                    |
| Clouds and the Earth's Radiation Energy System               | CERES      | Aqua      | Operating nominally                                                       |
| Moderate Resolution Imaging Spectroradiometer                | MODIS      | Aqua      | Operating nominally                                                       |
| Cloud Profiling Radar                                        | CPR        | Cloudsat  | Daylight Only operations                                                  |
| Visible Infrared Imaging Radiometer Suite                    | VIIRS      | Suomi-NPP | Operating nominally                                                       |
| Cross-track Infrared Sounder                                 | CrIS       | Suomi-NPP | Operating nominally                                                       |
| Clouds and the Earth's Radiation Energy System               | CERES      | Suomi-NPP | Operating nominally                                                       |
| Advanced Technology Microwave Sounder                        | ATMS       | Suomi-NPP | Operating nonlinally                                                      |
| Ozone Mapping and Profiler Suite                             | OMPS       | Suomi-NPP | Operating nominally                                                       |

## Science Objectives are Provided through External Recommendations

2010 NASA RESPONSE

TO CI IMATE PI AN

Responding to the Challenge of Climate

National Aeronautics and Space Administration

and Environmental Change: NASA's Plan for a Climate-Centric Architecture for

June 2010





## EARTH SCIENCE AND INS FROM SPACE

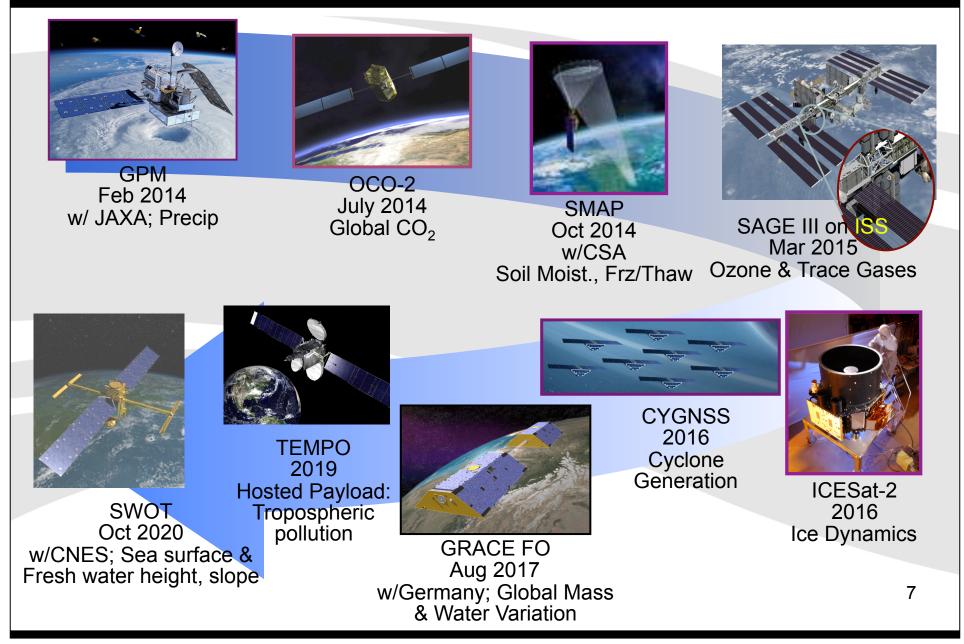
NATIONAL IMPERATIVES FOR THE NEXT DECADE AND BEYON

- **Research/Applications priorities**
- No realistic budget constraint
- Shopping list of missions & activities
- Assumed Legacy missions completed
- Identified new Climate Measurements
- Matched against President's budget Vetted w/OSTP, OMB & Admin
- Common in all guidance is the focus on the long term science objectives

**2012 NRC MIDTERM REPORT** 

A Midterm Assessment of NASA's Implementation of the Decadal Survey

NATIONAL RESEARCH COUNCIL


Endorsed NASA's implementation

- "Encouraged" more rigorous cost control Endorsed additional Venture calls

6

### **Formulation & Development Mission Plans**







# NASA ESD Flight Portfolio 2013 - 2022



- GPM (2/2014) Global Precipitation mapping, w/JAXA
- OCO-2 (7/2014) Atmospheric CO<sub>2</sub> monitoring, recovery mission
- SMAP (10/2014) Soil Moisture and Freeze/Thaw cycling, w/CSA (minor)
- SAGE-III/ISS (3/2015) Ozone, Temp, Humidity profiles, w/HEOMD, ESA
- ICESat-2 (12/2016) Precision Ice Topography, Ecosystem monitoring
- CYGNSS [EVM-1] (late 2016)
- GRACE-FO (8/2017) Gravity/Ice Mass/Ground Water, w/GFZ & DLR
- OCO-3/ISS (Fall 2017) CO<sub>2</sub> continuity, from ISS, OCO-2 spares
- **TEMPO** [EVI-1] (2019) Tropospheric Emissions from geosynchronous vantage
- SWOT (2020) Wide-swath ocean altimetry, land water, w/CNES
- EVI-2 Venture-Class (NLT 2020)
- PACE (2020) Ocean Color, possibly Aerosols
- L-band SAR (2021) Solid Earth, Cryosphere, Ecosystems, w/ISRO
- CLARREO (2022?) Precise global radiation balance, possibly w/UK
- EVM-2 (NLT 2022)
- EVI-3 (NLT 2022)
  - Significant studies ongoing for all other Tier-2 Decadal Survey missions
- And on the horizon:
  - Sustained Land Imaging program for the U.S. for 2018 2038
  - Solar Irradiance, Ozone profiles, and Earth Radiation Budget measurements for beyond 2020

# PACE and ACE



- Pre-ACE (Foundational data continuity)
  - Goals
    - make global ocean color measurements to provide extended data records on ocean ecology and global biogeochemistry
    - polarimetry measurements to provide extended data records on clouds and aerosols - maybe
  - Instruments
    - Ocean Ecosystem Spectrometer (UV to SWIR)
    - \* Aerosol/Cloud Polarimeter maybe
  - □ LRD: 2019 2020 (soon to go into formulation, sequester permitting)
- + ACE (DS Tier 2)
  - Goals
    - quantify the roles of aerosols, clouds, and aerosol-cloud-precipitation interactions
    - measure the ocean ecosystem changes and quantify ocean carbon uptake
    - improve air quality forecasting
  - Instruments
    - Imaging Aerosol/Cloud Polarimeter
    - Multi-frequency Doppler Cloud (precip) Radar
    - High Spectral Resolution Lidar
    - Ocean Ecosystem Spectrometer
  - □ LRD: >2023 (new Decadal Survey)

# International Space Station

ELC-2 AMS

ESP-3

ELC-4

Columbus EF

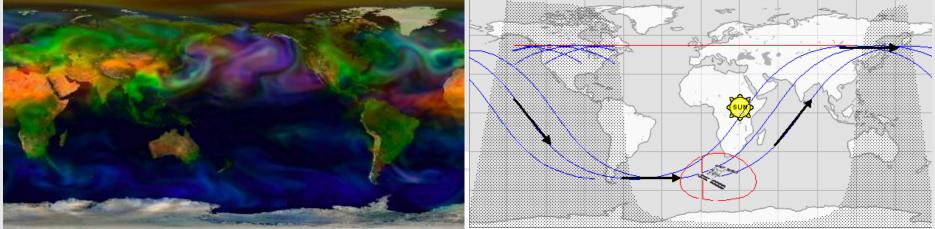
ESD/SAGE III (2015)

External Logistics Carriers – ELC-1, ELC-2, ELC-3 External Stowage Platforms – ESP-3 Alpha Magnetic Spectrometer Columbus External Payload Facility Kibo External Payload Facility

ISS/RapidSCAT (2014

#### ESD/OCO-3 (2017) ISS/CATS (2014)

ELC-3


ELC-1

JEMEF

## Cloud-Aerosol Transport System (CATS): Key Science Objectives



- Demonstrate multi-wavelength aerosol and cloud retrievals.
- Provide cloud and aerosol data to help bridge the gap between CALIPSO and future missions.
- Enable aerosol transport models with real-time data downlink from ISS
- ISS orbit is intriguing for tracking of plumes and study of diurnal effects (something not possible with A-Train orbit).



Snapshot of GEOS-4 model global aerosol distribution forecast for March 20, 2006 Orange = dust; Blue = sea salt; Green = smoke and sulfate; Saturation ~ species column amount

ISS orbit. The low-inclination orbit permits extensive measurements over aerosol source and aerosol transport regions.

## Venture Class Activities



## Venture-Class is a Tier-I Decadal Survey recommendation

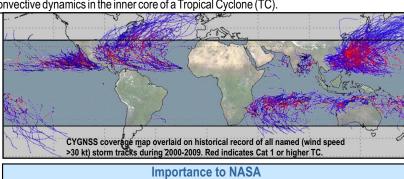
- Science-driven, PI-led, competitively selected, cost- and scheduleconstrained, regularly solicited, orbital and suborbital
- Venture-class investigations complement the systematic missions identified in the Decadal Survey, and provide flexibility to accommodate scientific advances and new implementation approaches

## Venture-Class is fully funded, with 3 "strands"

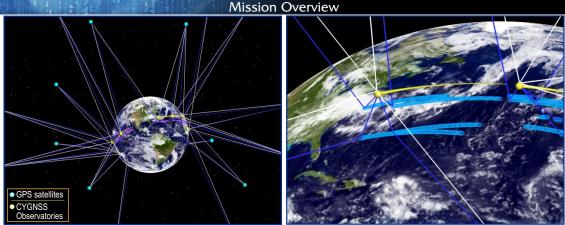
- EV Suborbital (EVS-#): suborbital/airborne investigations (5 years duration)
   Solicited in FY09 (selections in FY10) *and every 4 years*
  - EV Mission (EVM-#): small complete missions (5 years duration)
    - Small-sat or stand-alone payload as part of larger mission; \$150M total development cost
    - Solicited in FY11 and every 4 years
  - EV Instrument (EVI-#): Spaceborne instruments for flight on MoO (≤5 years development)
    - PI-led instrument(s) for NASA ESD-managed MoO; \$90M (class C) and \$30M (class D) total development cost for development and operations
    - Instrument accommodations to spacecraft outside of PI budget
    - Solicited in FY12 *and every 15-18 months*

## CYGNSS: Cyclone Global Navigation Satellite System




#### Science Goal and Objectives

The CYGNSS Science Goal is to understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of a Tropical Cyclone (TC).


#### Primary Objectives:

- Measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall
- Measure ocean surface wind speed in the TC inner core with sufficient frequency to resolve genesis and rapid intensification

Secondary Science: Support the operational hurricane forecast community by producing and providing ocean surface wind speed data products, and helping them assess the value of these products for use in their retrospective studies of potential new data sources.



- Resolve TC inner core dynamics and energetics, leading to fundamental improvements in our understanding of the genesis and intensification processes
- Provide post-QuikScat ocean wind measurement capability recommended by NRC Decadal Survey with enhanced coverage and performance in precipitating and high wind conditions
- Initiate an operational hand-off of unique observing capabilities to the operational hurricane forecast community



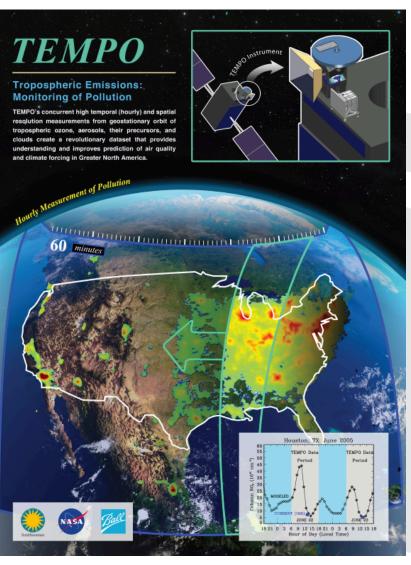
The CYGNSS mission is comprised of 8 Observatories that receive both direct (white lines) and reflected (blue lines) signals from GPS satellites. The direct signals pinpoint CYGNSS Observatory positions, while the reflected signals respond to ocean surface roughness, from which wind speed is retrieved. GPS bi-static scatterometry measures ocean surface winds at all speeds and under all levels of precipitation, including TC conditions. In the right figure, instantaneous wind samples are indicated by individual blue circles. Five minutes of wind samples are shown.

#### **TEMPO Tropospheric Emissions: Monitoring of Pollution** Hourly atmospheric pollution observations from geostationary Earth orbit



PI: Kelly Chance, Smithsonian Astrophysical Observatory

Instrument Development: Ball Aerospace


Project Management/Science: NASA LaRC

**Other Institutions:** NASA GSFC, NOAA, EPA, NCAR, Harvard, UC Berkeley, SLU, UAH, Nebraska

**Selected:** Nov. 2012 through NASA's first Earth Venture Instrument solicitation

#### Features:

- Instrument delivery 52 months from Authority to Proceed
- NASA will arrange hosting on commercial geostationary communications satellite with expected ~2018 launch
- Provides hourly daylight observations to capture rapidly varying emissions & chemistry
- UV-Visible grating spectrometer to measure key elements in tropospheric ozone and aerosol cycles
- Distinguishes boundary layer from free tropospheric & stratospheric ozone
- The North American geostationary component of an international constellation for air quality monitoring



| President's FY14 Budget                                                                                                                                          | NASA |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                  |      |
| <ul> <li>NASA ESD FY14 annual budget ~\$1.8B (stable)</li> </ul>                                                                                                 |      |
| <ul> <li>NASA given the responsibility to study and develop the<br/>next generation of land observing satellite sensors in<br/>consultation with USGS</li> </ul> |      |
| <ul> <li>NASA given responsibility for long-term observations by climate sensors</li> <li>OMPS-Limb</li> <li>TSIS</li> <li>CERES</li> </ul>                      |      |
|                                                                                                                                                                  | 16   |