AERONET Version 3 +

B. Holben, T. Eck, I. Slutsker, A. Smirnov, J. Schafer, M. Sorokin, D. Giles, A. Sinyuk

ICAP Tsukuba, Nov 5-8

AERONET Aerosol Robotic Network-Twenty Years of Observations and Research

AERONET Growth (1993-2012)

The AERONET program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and has been expanded by collaborators from international agencies, institutes, universities, individual scientists and partners.

AERONET provides a long-term, continuous public database of aerosol optical, microphysical, and radiative properties for aerosol research and characterization, validation of satellite measurements, and synergism with other databases.

- >7000 citations
- >400 sites
- Over 80 countries
- http://aeronet.gsfc.nasa.gov

The Talk Outline

- Discuss Primary Elements of V3
- Development time line and release date
- Collaboration w/ SKYNET other networks
- Other AERONET considerations

AERONET V3 Update What triggers a new version?

- Fundamental change is the data structure/management
- Fundamental change in the data processing algorithm(s): Cloud screening

Elements of Data Structure

- Every data point is geo-referenced
- Every data point is time stamped for each processing or data management action
- Data files organized by instrument rather than location—Multiple sites
- Data Processing-Auto processing of all requests crash proof, faster processing
- Daily data indexing--small reprocessing jobs and up-to-date database
- Condensed data storage: levels stored by product

AERONET Version 3 – AOD Enhancements

- Cloud screening-the big Kahuna
- Data cleaning-analyst to machine
- Temperature Characterization
- Update NO₂ monthly climatology (OMI, & diurnal Model)
- Reanalysis data set (e.g., GMAO MERRA vs NCEP): No Change
- O₃ climatology: No change

Databases for NO₂ Corrections

- NO₂ monthly climatology~ 25 km Res.: Archived OMNO2d files, PGE version 1.0.3.8, from 2004-10 to 2013-08
 - produced from the daily Level-3 OMNO2d product using the grid cell data weights
- Diurnal model ~100 km Res: GMI-MERRA hourly model output for four years. (DC3 runs)
 - produced from the daily GMI profile run, sampled every 1 hour

Diurnal NO₂ Model example

NO2 DIURNAL VARIABILITY for Hour=OUTC & Week_Day

-90

Temperature chacterization issues

- V2 based on detector manufacture specs
- V3 based on lab Measurements
 - Corrections applied to all channels
 - Develop defaults based on filter type & detector for instruments that cannot be characterized
 - Net result little change in Database statistics however some instruments can show measurable changes
 - Langley, intercomparison and sphere are recomputed before V3 implementation

Temperature Characterization (Began in 2008)

Example of spectral temperature characterizations for 1 manufacture to develop part of the default database

Cloud Clearing-V2 Algorithm

Problems: Thin stable cirrus clouds Highly variable dust or smoke Key V3 modifications temporal checks

- Triplet criterion –THREE channels (675, 870 and 1020 nm): "Cloud" if:
 - ALL THREE wavelengths within a triplet (tau_max – tau_min) exceeds 0.01 or
 - 0.015*tau (whichever is greater).
- Smoothness check Replaces "D16" with "N1": AOD at 500 nm (or 440 nm), Cloud if:
 – Delta AOD >0.01 per minute.

Key V3 modifications Spatial check

Aurole Radiance Curvature check –

- compute curvature for measured 1020 nm sky radiances within 3 6° SCATTERING angle.
- If curvature computed for the first available scattering angle is greater than 0.001 we do not apply a "curvature check".
- If curvature is less than 0.001 we compute a slope of Ln Curvature vs Ln Scat Angle.
 - If the slope is greater than 8 (empirically found) we consider all points within +/- 30 minutes to be "cloud contaminated" and eliminate those points.

AERONET – MPL Validation Data Set

- MPLNET cirrus only detection within ±10 minutes of AERONET measurement
- AERONET measurement within various solar zenith angles (e.g., 30°)
- Homogeneous cirrus conditions assumed

MPL Validation Data Set (Cirrus Only) MCC and %AERONET False Clear Singapore - SZA < 30° - COD>0.06

Comparison to V2 database: Singapore, #22, 2007-2011 fine mode and Ci

	N	AOD	Alpha
Lev 1.0	25500	0.61	0.58
Lev 1.5	8680	0.45	0.79
Lev 2.0	6920	0.34	1.21
NEW (no/CURV)	8640	0.35	1.17
NEW (w/CURV)	5029	0.33	1.40

Comparison to V2 database Nauru, #168, 2000-2005, 2010 Seasalt and Ci

	N	AOD	Alpha
Lev 1.0	25579	0.23	0.09
Lev 1.5	13326	0.11	0.33
Lev 2.0	9371	0.08	0.58
NEW (no/CURV)	13048	0.09	0.45
NEW (w/CURV)	7879	0.08	0.55

Comparison to V2 database Ilorin, Nigeria: #29, 1998-2013 Mixed BB & Dust

	N	AOD	Alpha
Lev 1.0	58151	0.84	0.42
Lev 1.5	37370	0.84	0.46
Lev 2.0	35392	0.77	0.51
NEW (no/CURV)	32601	0.73	0.55
NEW (w/CURV)	29348	0.76	0.55

Nes Ziona, 5/27/2005 – Level1.0 Clear sky, variable fine mode

Nes Ziona, 5/27/2005 – V2 Level1.5

Nes Ziona, 5/272005–V3 Level1.5

Advantages of the new cloud screening algorithm

- Automated algorithm delivers AODs and α at Level 1.5 statistically very close to current Level 2.0
- Improves screening of stable thin cirrus cloud contaminated data
- Partially restores highly variable fine mode dominated AOD data

Getting to L 1.5v and L 2.

V2: The human robot-A. Smirnov (Ret.?)
V3: Automatic Quality Checks

L 1.5v NRT, publishable results from database
L 2.0 Minimal analyst assessment

V3 QA Instrument checks-Under assessment

- Dark current check (analog instruments: 4.8x)
- Temperature jumps $(\pm \Delta 12^{\circ} \text{C}/15 \text{ min})$
- Temperature limits (>55°C or <-30°C)
- A or K voltages Too low (<0.3v) 4.8x and 5.x standard only
- A/K Discrepancy (A>10% of K) 4.8x and 5.x standard only
 - Evaluate A & K from PP & Almucantars
- Asymmetric sky scans (scattering angle: 3 to 6°)
- InGaAs vs Si 1020 nm ($\pm \Delta 0.06/m$) AOD 5.x extended only
- Retrieval limits (SSA₄₄₀ < 0.70?)
- AOD Diurnal Dependence (analyzing techniques and thresholds)
- AOD triplet variability for each channel???
- Dual filter wheel/polar instrument?????

AOD Diurnal Dependence

- Characterized by a non-linear change in the calibration due to various factors affecting the optics
 - Collimator obstruction (e.g., spider webs)
 - Moisture, dust, or obstruction on sensor head windows
 - Dust on filter inside the sensor head (e.g., filter wheel grinding or desiccant pack rupture)
 - Filter degradation increasing transmittance (produces opposite diurnal variability response than above)
 - Incorrectly set instrument gains (e.g., Medellin 10/6/2013) and producing AOD diurnal variability in both directions

AERONET Version 3 Update Sky Retrievals

• Dubovik inversion code remains unchanged

- Implementation of a vector radiative transfer code
 radiation field in UV (e.g., 380 nm retrieval)
 - degree of linear depolarization

Version 3: Vector RT Model will replace scalar RT Model

• Approach

- Select documented, published, community accepted RT models
- Test against benchmark conditions to compare accuracy and speed

Vector RT model Status

- Adding doubling (A/D, GISS)
- Discrete Ordinates w/APC (GSFC)
- Successive Orders of scattering (SO, Lille)
 - Accuracy: Rayleigh Atmos all within 0.1%
 - Timing: (Preliminary) A/D 2 to 10 times greater than scalar code
 - A/D dropped from further consideration
- Continue DO and SO development and assessments, planned completion: 01/2014

Inversions: Est. Uncertainty (Not linked to V3 release)

- PSD, n, k, SSA, APF, Sphericity
- Error bars for each retrieval
- Account for random errors in optical measurements, calibration uncertainty, and estimated uncertainty of surface reflectance

Level 2 retrievals

• Possibly revise V2 thresholds

 New retrieval products will be added as they are developed and are version independent

Timeline for release of V3

- Data Structure (Dec 2013)
- NO₂ (Nov. 2013)
- Temperature (Nov. 2013)
- Cld Screening (Done)
- Data cleaning (Feb. 2014)
- Vector Code (Jan 2014)
- Integration (March 2014)
- Release (April-June 2014)

Maritime Aerosol Network as a Component of AERONET

MAN represents an important strategic sampling initiative and ship-borne data acquisition complements island-based AERONET measurements

Maritime Aerosol Network global coverage from October 2006 to September 2013

AERONET Maritime Aerosol Network

Smirnov, A., et al., Maritime Aerosol Network as a component of Aerosol Robotic Network, J. Geophys. Res., 114, D06204, 2009.

The future bits

- Collaborative networks: SKYNET & CARSNET
 - Proceedures being established for comparability with AERONET-a work in progress
- Develop regional synoptic scale networks
- Closing the spatial gaps Africa
- Lunar Photometry

Skynet radiation & lidar network

 SKYNET
 SKYNET&Lidar (microwave)
 AD-net lidar

There are about 40 CARSENT operational site running at present.

AERONET DRAGONs

Distributed Regional Aerosol Gridded Observation Networks

Past DRAGONs

- 2011 Maryland (Urban)
- 2012 South Korea (Urban/Asia Outflow)
- 2012 Japan (Urban/Asia Outflow)
- 2012 Singapore (Urban)
- 2012 Penang, Malaysia (Urban)
- 2013 San Joaquin Valley, California (Urban)

- Current DRAGONs
 - 2013 Germany (Industrial)
 - 2013 Houston (Urban/Industrial)
- Upcoming DRAGONS
 - Colorado?
 - î

<u>AERONET DR</u>AGONs

- Spatially distributed sun photometers deployed around aerosol sources (e.g., cities and industrial regions) over surfaces challenging for satellite remote sensing
- Provide 1 to several months of data in mesoscale distribution at high temporal sampling
- Complements air quality campaigns such as DISCOVER-AQ

AERONET Distribution

• Current holes in the net:

- Most of Africa
- Northern and Central Asia
- Northern South America
- Northeastern and Western Australia
- Plan: Fill in the gaps; Need increase in funding, staff, and facilities

Misc. stuff at The End of the World

- Volcanic motivated networks

 STRAPES (S. America), UK other European,

 Website will be updated before release of V3
- Lunar Photometer-future addition to AERONET: post V3 release
- African sites are few
- Caution on level 1 SDA fine/coarse retrievals